Introduction	Model	Steady State	Welfare and Growth	Conclusion

Endogenous Transport Investment, Geography, and Growth Take-offs

International Conference on Infrastructure Economics and Development

Stefan Zeugner

ECARES, Université Libre de Bruxelles (ULB)

Toulouse, 2010-01-14

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Motivation: Geography Matters

Motivation

- Industrial revolution: why Britain?
- Why do some countries manage growth take-off and some don't?

 Stylized fact: inter alia, growth take-off is associated with rapid urbanization / agglomeration (cf. e.g. recent World Bank WDR 2009)

Economic Geography attributes both effects to falling transport costs
 but does not explain how these obtain.

= > na a

Introduction	Model	Steady State	Welfare and Growth

Motivation: Transport matters

Economic Geography (NEG) Approach

 Economic Geography (Krugman, 1991, ...), theoretical: Spatial concentration depends on exogenous transport cost parameter:

- Two symmetric regions: Initially static gains from trade.
- If transport costs sink below a certain threshold: agglomeration
- ⇒ All modern firms cluster in one region (beneficial / 'take-off')

Critique

X In NEG, transport costs are causal to economic growth

- × Transport cost change is exogenous, arbitrary, and even for free!
- NEG does not explain why transport costs fall and if, why and when the threshold is reached

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Transport & Growth: Literature

- Empirical findings:
 - Transport infrastructure hardly causal to growth (e.g. Bose & Haque 2005)
 - Transport infrastructure is costly not easy to afford
 - Historically, a decrease in physical transport costs not tariffs is related to industrial revolution (O'Rourke 2000)
- Analytical models:
 - very few: Vishny & Shleifer (1989), Kelly (1997), NEG: Takahashi (2006)
 - coordinate investment into one technology with externalities (EoS): 'Big Push' – result is trivial

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Paper Stra	ategy			

Objective: Model that features

- **1** Static benefits from economic integration
- 2 Agglomeration-enhanced innovation
- 3 Endogenous transport that comes at a cost

 $1\ \&\ 2$: Use Baldwin, Martin and Ottaviano (2001) NEG & growth model

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Paper Stra	ategy			

Objective: Model that features

- **1** Static benefits from economic integration
- 2 Agglomeration-enhanced innovation
- 3 Endogenous transport that comes at a cost
- $1\$ & 2: Use Baldwin, Martin and Ottaviano (2001) NEG & growth model
- 3: Integrate endogenous transport

Note: Features borrowed from Baldwin et al. (2001) marked in grey

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Paper Strate	gy			

Objective: Model that features

- Static benefits from economic integration
- 2 Agglomeration-enhanced innovation
- 3 Endogenous transport that comes at a cost
- $1\$ & 2: Use Baldwin, Martin and Ottaviano (2001) NEG & growth model
- 3: Integrate endogenous transport

Note: Features borrowed from Baldwin et al. (2001) marked in grey

< ≣ > • • • • • •

Introduction	Model	Steady State	Welfare and Growth	Conclusion
F	- .			

Introduction	Model	Steady State	Welfare and Growth	Conclusion
- ·	· -	_		

Endogenize Transport

I ≥ ► DQ (P)

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Endogenize	e Transpo	ort		

< ≡ > • • • • • •

Endogenize Transport: Fleet Investment

This paper concentrates on 'fleet investment': private, bottom-up transport capital, no (direct) externalities Each private firm builds improves its own 'fleet' of vehicles

- Why private bottom-up?
 - In 19th century Europe and poor countries, fixed transport infrastructure mostly built privately (Keller & Shiue 2008)
 - Most large infrastructure projects designed to meet private demand
- Why no externalities?
 - Majority of transport investment is in rolling stock (US) should apply even more to poor countries.
 - In 18th century Britain, transport improvements financed by private ventures and local merchants

Introduction

Model

Steady State

Welfare and Growth

Conclusion

Overall Transport Investment in the US

Investment in transport capital by household, private business, and government sector Data source: Bureau of Transport Statistics (2004)

Stefan Zeugner (ECARES)	Transport, Geography, and Growth	ICIED 2010-01-14 8 / 39

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Model Set-up: borrowed from Baldwin et al. (2001)

- Two regions, symmetrical endowments
- Two production factors: labor L, L^* and capital $K + K^* = K^w$
- Three sectors:
 - Consumer good Agriculture (A): numéraire, perfect competition
 - Consumer good Manufacturing (M): monopolistic competition, standard mark-up pricing, profits accrue to capital owners
 - Innovation sector (I): AK productivity with localized spillovers $A \equiv \frac{K}{K^{w}} + \lambda \frac{K^{*}}{K^{w}} = s + \lambda(1 - s) \qquad \lambda \in (0, 1)$
- Representative consumer: Cobb-Douglas between A and M, CES over manufacturing products (elasticity $\sigma > 1$)

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Geography:	Iceberg Co	osts		

- Trade agricultural goods at no cost (equalizes wages)
- Immobile L & K, K has to be employed where it is constructed
- Iceberg costs for manufacturing goods:
 - Need $au \geq 1$ goods shipped for 1 unit to arrive in South $(au^* v.v.)$
 - Thus export price $p^* = \tau p$ (τ times domestic price)
 - Define free-ness of trade $\phi \equiv \tau^{1-\sigma} \in (0,1]$ $(\phi^* \text{ v.v.})$

I > na a

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Fleet Invest	ment			

- Each firm i ships its goods by its own 'fleet'
- Fleet capital mapped to individual $\phi_i \in (\phi, 1)$:
 - \blacksquare minimum value ϕ and depreciation rate $\delta_{\mathcal{T}}$
 - capital law of motion mapped to $\dot{\phi}_i$
 - fleet investment rate Q_i , with quadratic adjustment costs

Firm's transport capital problem:

\Rightarrow Dynamic system in ϕ_i and \mathcal{Q}_i , unique steady state $(\widehat{\phi}, \widehat{\mathcal{Q}})$

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Fleet Investr	nent			

- Each firm i ships its goods by its own 'fleet'
- Fleet capital mapped to individual $\phi_i \in (\phi, 1)$:
 - \blacksquare minimum value ϕ and depreciation rate $\delta_{\mathcal{T}}$
 - **•** capital law of motion mapped to $\dot{\phi}_i$
 - fleet investment rate Q_i , with quadratic adjustment costs
- Firm's transport capital problem:

$$\max_{Q_i} \int_0^\infty e^{-rt} (\overbrace{\pi_i(\phi_i)}^{\text{operating profits}} - \overbrace{a_T Q_i^2 w_L}^{\text{adjustment costs}}) dt$$

s.t. $\frac{\dot{\phi}_i}{(1-\phi_i)} = (Q_i - \delta_T(\phi_i - \underline{\phi}))$

 $\Rightarrow\,$ Dynamic system in ϕ_i and Q_i , unique steady state $(\hat{\phi},\hat{Q})$

= NOOA

Introduction	Iviodei	Steady State	vveitare and Growth	Conclusion
Equilibriun	n and Ste	eady State		
Two kinds of	steady sta	te:		
Interior	Equilibrium	$\dot{K} = \frac{\dot{K}}{\kappa} = \frac{\dot{K}^*}{\kappa^*}$		

Two relations must hold in Steady State:

'EE' Relation

 \Rightarrow Northern income share $s_E^{EE}(s) = \frac{E(s)}{E^w(s)}$ strictly increasing in s

• Core-Periphery (CP) Equilibrium: $s \equiv \frac{K}{KW} = 1$ or s = 0

'nn' Relation

 \Rightarrow From equal return on capital (in interior equilibria): $s_E^{nn}(s)$

⇒ Dynamics: CP and Symmetric $(s_E^{nn} = s_E^{EE} = \frac{1}{2})$ are always solution, but may be *stable or unstable*

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

Introduction	Iviodei	Steady State	weitare and Growth	Conclusion
Equilibrium	and Steady	v State		
Two kinds of s	teady state:			

- Interior Equilibrium: $\frac{\dot{K}}{K} = \frac{\dot{K}^*}{K^*}$
- Core-Periphery (CP) Equilibrium: $s \equiv \frac{K}{K^w} = 1$ or s = 0

Two relations must hold in Steady State:

'EE' Relation

$$\Rightarrow$$
 Northern income share $s_E^{EE}(s) = \frac{E(s)}{E^w(s)}$ strictly increasing in s

'nn' Relation

 \Rightarrow From equal return on capital (in interior equilibria): $s_E^{nn}(s)$

⇒ Dynamics: CP and Symmetric $(s_E^{nn} = s_E^{EE} = \frac{1}{2})$ are always solution, but may be *stable or unstable*

Stefan Zeugner (ECARES)

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Steady State: Phase Diagram

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Isolation vs. Agglomeration

Initial Stage $\phi=\phi$

Start from symmetric (stable) equilibrium $\phi = \phi$ capital / real wage growth $g_{iso} = bL^w \frac{1+\lambda}{2} - \Theta$

Intermediate Integration $\phi_{sym} > \phi$

If L^w , ϕ low: Firms build fleets ϕ_{sym} , remain in symmetric steady state: Diverts resources from innovation to transport, lose on growth growth $g_{sym} < g_{iso}$

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Isolation vs. Agglomeration

Initial Stage $\phi=\phi$

Start from symmetric (stable) equilibrium $\phi = \phi$ capital / real wage growth $g_{iso} = bL^w \frac{1+\lambda}{2} - \Theta$

Intermediate Integration $\hat{\phi}_{\textit{sym}} > \phi$

If L^w , ϕ low: Firms build fleets ϕ_{sym} , remain in symmetric steady state: Diverts resources from innovation to transport, lose on growth growth $g_{sym} < g_{iso}$

Rapid Agglomeration $\phi_{\it CP} > \phi_{\it sym}$

Only if L^w , $\underline{\phi}$ large enough: large $\hat{\phi}_{CP}$ renders CP stable growth $g_{CP} \ge g_{sym}$

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Isolation vs. Agglomeration

Initial Stage $\phi = \phi$

Start from symmetric (stable) equilibrium $\phi = \phi$ capital / real wage growth $g_{iso} = bL^w \frac{1+\lambda}{2} - \Theta$

Intermediate Integration $\hat{\phi}_{\textit{sym}} > \phi$

If L^w , ϕ low: Firms build fleets ϕ_{sym} , remain in symmetric steady state: Diverts resources from innovation to transport, lose on growth growth $g_{sym} < g_{iso}$

Rapid Agglomeration $\hat{\phi}_{CP} > \hat{\phi}_{sym}$

Only if L^w , $\underline{\phi}$ large enough: large $\hat{\phi}_{CP}$ renders CP stable growth $g_{CP} \ge g_{sym}$

Introduction	Model	Steady State	Welfare and Growth	Conclusion

Simulation: From Isolation to Agglomeration

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Policy Implic	ations			

- This paper presents an endogenous growth model with growth take-offs – which may occur without government intervention
- Rather a role for government: complement private initiative, to push the economy to the CP steady state.
- Raising <u>\$\phi\$</u>: for instance, investing in *complementary public good* transport infrastructure ('ports'), removing obstacles, ...
- Decreasing fleet maintenance cost δ_T
- Reasons for lack of rolling infrastructue (e.g. Congo river, some rail lines)

= > na a

Introduction	Model	Steady State	Welfare and Growth	Conclusion
Conclusion				

- Endogenized transport infrastructure in Economic Geography via 'fleet investment': decentral, local, and endogenous
- $\Rightarrow\,$ resolves causality shortcomings in the literature
 - Result: Economic density L^w vs. <u>\u03c6</u> determines *if*, *why*, *when* & *where* economies reach an 'agglomeration threshold' / 'take-off'
 - Note: Case with transport monopoly (same technology) yields broadly similar results

= NOOA

References	Credit Constraints	Data	Model	Steady State	Simulation	Alternative Transport Sector
Appen	dix					

- 6 Credit Constraints
- 7 Data
- 8 Model
- 9 Steady State
- **10** Simulation
- Alternative Transport Sector

- Baldwin, R.E., Martin, P., and Ottaviano, G.I.P. (2001): Global Income Divergence, Trade, and Industrialization: The Geography of Growth Take-Offs. *Journal of Economic Growth*, 6(1):5-37
- Grossman, G. and Helpman, E. (1990): Trade, Knowledge Spillovers, and Growth. *NBER Working Paper* 3485.
- Henderson, J.V. (2005): Urbanization and Growth. Aghion and Durlauf (ed.), Handbook of Economic Growth: 1543–1591, Elsevier.
- Kelly, M. (1997): The Dynamics of Smithian Growth. *The Quarterly Journal of Economics*, 112(3):939–964
- Takahashi, T. (2006): Economic geography and endogenous determination of transport technology. *Journal of Urban Economics*, 60(3):498–518

World Bank (2008): World Development Report 2009: Reshaping Economic Geography.

Firms may not be able to embark on their investment trajectory right away due to credit restrictions:

Export profitability constraint (EPC)

Operating profits from export $\pi_i^*(\phi_i)$ larger than fleet maintenance cost

 $\pi_i^*(\phi_i) \geq a_T Q_i^2$

References Credit Constraints Data Model Steady State Simulation Alternative Transport Sector

Fleet Investment with Export Profitability Constraint

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

Firms may not be able to embark on their investment trajectory right away due to credit restrictions:

Export profitability constraint (EPC)

Operating profits from export $\pi_i^*(\phi_i)$ larger than fleet maintenance cost

$$\pi_i^*(\phi_i) \ge a_T Q_i^2$$

- In case initial investment costs too expensive, firms invest little and move along the EPC until they hit the standard saddle path
- \Rightarrow will severely delay time until steady state is reached
- ⇒ but has no effect on the position of steady state $\hat{\phi}$, CP or symmetric (since EPC is never binding in steady state)

References	Credit Constraints	Data	Model	Steady State	Simulation	Alternative Transport Sector

Backup: Urbanization and Growth go Hand-in-Hand

Transport, Geography, and Growth

References Credit Constraints Data Model Steady State Simulation Alternative Transport Sector

Backup: Economic Density and Growth are Concurrent

2010-01-14 25 / 39

Backup: Take-off vs. Economic Density

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

References	Credit Constraints	Data	Model	Steady State	Simulation	Alternative Transport Sector

Backup: Infrastructure Stocks and GDP/cap.

Backup: Fleet Dynamics

 \dot{Q}_i from f.o.c.:

$$\dot{Q}_i = \left(
ho + \delta_{\mathcal{T}}(1-\phi)
ight) Q_i - rac{\partial \pi(\phi)}{\partial \phi} rac{(1-\phi)}{2 a_{\mathcal{T}} w_L}$$

Loci:

$$\begin{aligned} Q_i(\phi_i)|_{\dot{\phi}_i=0} &= \delta_T \left(\phi_i - \underline{\phi}\right) \\ Q_i(\phi_i)|_{\dot{Q}_i=0} &= \frac{\partial \pi(\phi)}{\partial \phi} \frac{(1-\phi)}{2a_T w_L \left(\rho + \delta_T (1-\phi)\right)} \end{aligned}$$

I ≥ >

Backup: Transport Capital I

- Suppose transport capital K_i^T s.th. $\phi_i(K_i^T) : [0, \infty) \to (0, 1]$, monotone
- Firm's problem:

$$\max_{p_{i,t},p_{i,t}^{*},Q_{i,t}} \int_{0}^{\infty} e^{-rt} (x_{i}(p_{i,t})p_{i,t} + x_{i}^{*}(p_{i,t}^{*},\phi(K_{i,t}^{T}))p_{i,t}^{*} - F - - w_{L}a_{M} \left(x_{i}(p_{i,t}) + \tau x_{i}^{*}(p_{i,t}^{*},\phi(K_{i,t}^{T})) \right) - C(\overline{Q}_{i,t},K_{i,t}^{T})w_{L}) dt s.t. \quad \dot{K}_{i}^{T} = \overline{Q}_{i} - \overline{\delta}_{T}K_{i}^{T}$$

 Under no uncertainty, simultaneous optimization equivalent to sequential optimization:

$$\max_{Q_i} \int_0^\infty e^{-rt} \left(\pi_i(\phi_i(K_i^T)) - C(\overline{Q}_i, K_i^T) w_L \right) dt$$

s.t. $\dot{K}_i^T = \overline{Q}_i - \overline{\delta}_T K_i^T$

< ∃ > ∽ < <>

Specific parametrization:

$$\phi_i = \frac{K_i^T + \phi}{K^T + 1} \Leftrightarrow K_i^T = \frac{\phi - \phi}{1 - \phi} \qquad C(\overline{Q}_i, K_i^T) = a_T \left(\frac{\overline{Q}}{K + 1}\right)^2$$

• As ϕ_i is bijective to K_i^T , express K_i^T in terms of ϕ_i

• Redefine
$$Q_i \equiv \frac{\overline{Q_i}}{K_i+1}$$
, $\delta_T \equiv \frac{\overline{\delta}_T}{(1-\underline{\phi})}$

 \Rightarrow Reduced problem:

$$\max_{Q_i} \int_0^\infty e^{-rt} \left(\pi_i(\phi_i) - w_L a_T Q_i^2 \right) dt$$

s.t. $\dot{\phi}_i = (1 - \phi_i) \left(Q_i - \delta_T(\phi_i - \underline{\phi}) \right)$

Fleet Investment: Additional Assumptions

Spillovers: capital stock *K* eases transport

- Basic Assumption: spillovers from capital stock extend to fleet investment
- Technical Assumption: for analytical tractability, specific transport capital productivity $(s + \phi(1 s)) K^w$, i.e. akin to capital spillovers

Transport: Constant Returns to Scale

The transport capital technology is CRS with respect to the number of shipped goods

References	Credit Constraints	Data	Model	Steady State	Simulation	Alternative Transport Sector
Backu	p: Market (Cleari	ng			

- \blacksquare Free trade in agriculture \Rightarrow agricultural price equals wage: $w_L = w_L^* = 1$
- \Rightarrow 'mill price' of manufacturing good normalized to $p_i = 1$, Southern import price $\tau_i \ge 1$
- \Rightarrow Northern manufacturing firm operating profits:

$$\pi = \frac{\mu}{\sigma} \frac{E^{w}}{K^{w}} \left(\frac{s_{E}}{s + \phi^{*}(1 - s)} + \phi \frac{(1 - s_{E})}{\phi s + (1 - s)} \right)$$

 \Rightarrow Northern consumption expenditure

$$E = \frac{L^w}{2} + (\pi - a_T Q^2) s K^w - L_I$$

Backup: Steady State – Return on Capital

At any steady state: firm present value v equals capital cost a₁ for North and South:

$$v = \frac{\pi - a_T Q^2}{\rho + \delta + g} = \frac{1}{AK^w} = a_I \qquad v^* = a_I^*$$

 \Rightarrow Pins down expenditure in both interior and CP steady state:

$$E(s) = \frac{L^{w}}{2} + \rho \frac{s}{A}$$
 $E^{*}(s) = \frac{L^{w}}{2} + \rho \frac{(1-s)}{A^{*}}$

 \Rightarrow Returns $\hat{\phi}$, \hat{Q} as a function of s

Backup: Steady State – Return on Capital

At any steady state: firm present value v equals capital cost a₁ for North and South:

$$v = \frac{\pi - a_T Q^2}{\rho + \delta + g} = \frac{1}{AK^w} = a_I \qquad v^* = a_I^*$$

 $\Rightarrow\,$ Pins down expenditure in both interior and CP steady state:

$$E(s) = \frac{L^{w}}{2} + \rho \frac{s}{A}$$
 $E^{*}(s) = \frac{L^{w}}{2} + \rho \frac{(1-s)}{A^{*}}$

 \Rightarrow Returns $\hat{\phi}$, \hat{Q} as a function of s

Backup: Steady State – Fleet

$$egin{aligned} \left(1-\hat{\phi}(s)
ight) &= -rac{rac{b}{2\delta_T^2} E^* + rac{
ho}{\delta_T} - (1-rac{
ho}{2})}{2} + \ &+ \sqrt{\left(rac{2\delta_T^2}{2\delta_T^2} E^* + rac{
ho}{\delta_T} - (1-rac{
ho}{2})}{2}
ight)^2 + rac{
ho}{\delta_T} (1-rac{
ho}{2})} \end{aligned}$$

$$\hat{Q}^{2} = (\hat{\phi} - \underline{\phi})\delta_{T} \left(\delta_{T}(1 - \underline{\phi}) + \rho\right) - \frac{b}{2} \underbrace{\left(\frac{L^{w}}{2} + \rho \frac{(1 - s)}{A^{*}}\right)}_{=E^{*}} (1 - \hat{\phi})$$

Stefan Zeugner (ECARES)

Backup: Steady State – 'EE' relation

• From E(s): \Rightarrow market clearing ('EE') relation $s_E^{EE}(s) = \frac{E}{E^w}$ as a strictly increasing function of s

$$s_E^{EE} = \frac{\frac{1}{2}L^w + \rho\frac{s}{A}}{L^w + \rho\left(\frac{s}{A} + \frac{(1-s)}{A^*}\right)}$$

References

Steady State

Simulation

Alternative Transport Sector

Backup: Steady State – 'nn' relation

 From v = a_I, v* = a_I* at all interior equilibria: innovation sector earnings equalization:

$$A(\pi - a_T Q^2) = A^*(\pi^* - a_T^* Q^{*2})$$

 \Rightarrow Defines 'nn' relation $s_E^{nn}(s)$

$$s_E^{nn}(s) = \frac{\frac{1}{bE^w} \left(A \Delta \hat{Q}^2 - A^* \Delta^* \hat{Q}^{*2} \right) + \Delta \left((1 - \hat{\phi} \lambda) - (1 + \hat{\phi})(1 - \lambda)s \right)}{\left(1 - \hat{\phi} \hat{\phi}^* \right) \left(A^*s + A(1 - s) \right)}$$

Dynamics

I if $s_E^{nn}(s) < s_E^{EE}(s)$, then $\dot{s} > 0$ (due to $rac{v}{a_i} > rac{v^*}{a^*_i}$)

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

ICIED 2010-01-14 36 / 39

Simulation

Backup: Steady State – 'nn' relation

 From v = a_I, v* = a_I* at all interior equilibria: innovation sector earnings equalization:

$$A(\pi - a_T Q^2) = A^*(\pi^* - a_T^* Q^{*2})$$

 \Rightarrow Defines 'nn' relation $s_E^{nn}(s)$

$$s_E^{nn}(s) = \frac{\frac{1}{bE^w} \left(A \Delta \hat{Q}^2 - A^* \Delta^* \hat{Q}^{*2} \right) + \Delta \left((1 - \hat{\phi} \lambda) - (1 + \hat{\phi})(1 - \lambda)s \right)}{\left(1 - \hat{\phi} \hat{\phi}^* \right) \left(A^*s + A(1 - s) \right)}$$

Dynamics

If
$$s_E^{nn}(s) < s_E^{EE}(s)$$
, then $\dot{s} > 0$ (due to $\frac{v}{a_I} > \frac{v^*}{a_I^*}$)

Stefan Zeugner (ECARES)

References Credit Constraints Data Model Steady State Simulation Alternative Transport Sector

Backup: Threshold for Agglomeration

Parameter settings for which the the symmetric steady state is unstable (above the surface)

Parametrization for this figure: $\delta = 0.05$, $\rho = 0.02$, $\lambda = 0.5$, $b = \frac{\mu}{\sigma} = 0.2$

Backup: Isolation Trap

Parameter settings for which the export profitability constraint $\pi_i^* \ge a_T Q_i^2$ is binding (below the surface)

Parametrization for this figure: δ = 0.05, ρ = 0.02, λ = 0.5, $b = \frac{\mu}{\sigma} = 0.2$

Stefan Zeugner (ECARES)

Transport, Geography, and Growth

 $\exists \land \mathscr{O} \land \mathscr{O}$

Backup: Alternative Transport Sector

Credit Constraints

- Monopolist with toll and no CRS: revenue accruing to shipper per firm: (θ - 1)τx_i^{*}; τx_i^{*} is exported goods of firm i.
- Results: firm profits downweighted by $\left(\frac{\sigma}{\sigma-1}\right)^{1-\sigma} \Rightarrow$, $\hat{\phi}_{monop} < \hat{\phi}_{fleet}$.

Steady State

Simulation

- Moreover in sym. and CP steady state: $E_{monop} < E_{fleet}$.
- Broadly, mechanics are quite similar.
- Did not manage to analytically solve for s_E^{nn} and s_E^{EE} i.e. steady state.
- seems that all growth rates are lower since bE^w term is downweighted.
- Downsides with my formulation:
 - Also at ϕ there is toll
 - monopolist does not take effect on price level into account (i.e. one monopolist per firm)

Alternative Transport Sector