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Abstract

These are the solutions for the Feb 5th version of Prof.Strasser’s sample test on

http://helmut.strasserweb.net/public/vgsf.html#Anchor-Midter-5542 .

If you notice any error, please email zeugner@ihs.ac.at with a corrected LATEX

file (LATEX files are to be found on the website

http://elaine.ihs.ac.at/∼zeugner/stats/ ).

The respective identifiers for those examples in Prof. Strasser’s lecture notes

from Feb 1st are given in italic letters. For the numberings referring to other

versions of Prof. Strasser’s notes, please consult the table at the next page.

The sign 3 indicates that the respective solution has been approved by Prof.

Strasser. The sign 7 indicates that Prof. Strasser has comments on the exercise

(printed at the beginning of each such exercise).
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Table 1: Exercise Number Reference

Test Notes 1 Notes 3 Notes 4 Notes 5 Feedback page

2006-02-05 2006-01-05 2006-01-25 2006-01-31 2006-02-01

E1 1.4a 1.4 1.4 1.4 3 p. 4

E2 1.4b 1.5 1.5 1.5 3 p. 4

E3 1.7a 1.8 1.8 1.8 3 p. 5

E4 1.14 1.16 1.16 1.16 3 p. 6

E5 1.16? 1.18 1.18 1.18 3 p. 6

E6a 1.21 1.23 1.23 1.23 3 p. 7

E6b 1.22a 1.24a 1.24a 1.24a 7 p. 8

E7 1.24? 1.30 1.30 1.30 7 p. 9

E8 2.3 2.3 2.3 2.3 7 p. 9

E9 na 2.4 2.4 2.4 7 p. 10

E10 na 2.5 2.5 2.5 7 p. 11

E11 na 2.22 2.22 2.22 7 p. 12

E12 na 3.6 3.6 3.6 3 p. 13

E13 na 3.7 3.7 3.7 7 p. 14

E14 3.14 3.18 3.18 3.18 3 p. 15

E15 3.20 3.24 3.24 3.24 3 p. 15

E16 na 4.5 4.5 4.5 3 p. 16

E17 na 4.9 4.9 4.9 3 p. 17

E18 na 4.14 4.14 4.14 3 p. 18

E19 na 5.2a 5.2a 5.2a 3 p. 19

E20 na 5.2b 5.2b 5.2b 7 p. 19

E21 5.5 6.5 6.5 6.3 7 p. 20

E22 5.4 6.4 6.4 6.4a 3 p. 21

E23 na na na 6.11 3 p. 21

E24 6.10 7.12 7.12 7.13 7 p. 22

E25 6.11 7.13 7.13 7.14 3 p. 23

E26 na na 7.18 7.19 3 p. 24

E27 6.15 7.17 7.19 7.20 3 p. 25

E28 na na 7.32 7.35 7 p. 26

E29 na na 7.34 7.37 3 p. 27

E30 7.4 8.4 8.4 8.4 3 p. 28

E31 see Thm 7.16 see Thm 8.16 see Thm 8.16 see Thm 8.18 p. 28

E32 see Thm 7.17 see Thm 8.18 see Thm 8.18 see Thm 8.18 3 p. 30

E33 7.27 8.28 8.28 8.30 3 p. 31

E34 7.33 8.33 8.33 8.35 3 p. 32

E35 7.34b 8.34b 8.34b 8.36b 3 p. 33

I1 1.7b 1.9 1.9 1.9 3 p. 35

I2 1.15 1.17 1.17 1.17 3 p. 37

I3 1.19 1.21 1.21 1.21 3 p. 38

I4 2.5 2.7 2.7 2.7 3 p. 40

I5 2.9 2.11 2.11 2.11 3 p. 40

I6 3.10 3.14 3.14 3.14 3 p. 41
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Table 2: Exercise Number Reference (continued)

Test Notes 1 Notes 3 Notes 4 Notes 5 Feedback page

2006-02-05 2006-01-05 2006-01-25 2006-01-31 2006-02-01

I7 3.11 3.15 3.15 3.15 3 p. 42

I8 3.22b 3.26b 3.26b 3.26b 3 p. 43

I9 3.25 3.31 3.31 3.32 3 p. 44

I10 na 4.3a 4.3a 4.3a 7 p. 44

I11 na 4.12 4.12 4.12 7 p. 45

I13 na 4.13 4.13 4.13 7 p. 46

I14 na 4.15 4.15 4.15 7 p. 48

I15 na na na 6.8 3 p. 49

I16 na na na 6.10 3 p. 50

I17 6.9 7.11 7.11 7.12 3 p. 51

I18 na na 7.33 7.36 3 p. 52

I19 7.5 8.5 8.5 8.5 3 p. 53

I20 7.11 8.11 8.11 8.12 3 p. 54

I21 7.25 8.25 8.25 8.27 3 p. 55

I22 7.30a 8.30a 8.30a 8.32a 3 p. 56

I23 7.35 8.35 8.35 8.37 3 p. 57

I24 7.36 8.36 8.36 8.38 3 p. 58

A1 1.8? 1.10 1.10 1.10 3 p. 60

A2 1.25 1.28 1.28 1.28 3 p. 61

A3 1.36 a) 1.40a 1.40a 1.40a 3 p. 62

A4 1.36 b) 1.40b 1.40b 1.40b 3 p. 63

A5 2.7 2.9 2.9 2.9 3 p. 64

A6 3.8 3.12 3.12 3.12 3 p. 65

A7 6.4 7.5 7.5 7.6 3 p. 66

A8 na 7.7 7.7 7.8

A9 7.9 8.9 8.9 8.10 3 p. 67

R1 1.17 1.19 1.19 1.19 p. 69

R2 1.32 1.36 1.36 1.36 p. 69

R3 1.33 1.37 1.37 1.37 p. 70

R4 1.47 1.44 1.44 1.44 p. 73

R5 2.8 2.10 2.10 2.10 p. 74

R6 2.19 2.20 2.20 2.20 p. 75

R7 na 2.27 2.27 2.27 p. 76

R8 na na na 3.30 p. 77

R9 na na na 3.34

R10 na na na 6.12 p. 77

R11 na na na 7.4 p. 79

R12 na na na 7.22 p. 80

R13 na na na 7.30 p. 82

R14 na na na 8.8 p. 82

R15 na na na 8.13 p. 83

R16 na na na 8.40



1 EASY QUESTIONS 4

1 Easy Questions

Easy 1 (Test Feb-05), 1.4 (Notes Feb-01) 3

Problem: Let µ|A be a content. Then A1 ⊆ A2 implies µ(A1) ≤ µ(A2).

——

Let A1, A2 ∈ A. A1. Then A2 \ A1 are disjoint. Using the properties of µ|A a

content we get;

µ(A1) ≤ µ(A1) + µ(A2 \ A1) = µ(A1 ∪ (A2 \ A1)) = µ(A2)

Easy 2 (Test Feb-05), 1.5 (Notes Feb-01) 3

Problem: Show that every content satisfies the inclusion-exclusion law:

µ(A1) + µ(A2) = µ(A1 ∪ A2) + µ(A1 ∩ A2)

——

We know:

µ(A1) = µ(A1 \ (A1 ∩ A2)) + µ(A1 ∩ A2)

µ(A2) = µ(A2 \ (A1 ∩ A2)) + µ(A1 ∩ A2)

Adding both lines and using additivity of the content we get

µ(A1) + µ(A2) = µ(A1 \ (A1 ∩ A2)) + µ(A1 ∩ A2) + µ(A2 \ (A1 ∩ A2)) + µ(A1 ∩ A2)

= µ((A1 \ (A1 ∩ A2)) ∪ (A1 ∩ A2) ∪ (A2 \ (A1 ∩ A2))) + µ(A1 ∩ A2)

= µ((A1 ∪ A2))) + µ(A1 ∩ A2)
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Easy 3 (Test Feb-05), 1.8 (Notes Feb-01) 3

Problem: Let Ω = (−∞,∞] and let R be the system of subsets arising as

unions of finitely many intervals of the form (a, b] where −∞ ≤ a < b ≤ ∞

(left-open and right-closed intervals). Explain why R is a field. (Include ∅

as the union of nothing).

——

take (Ω,R) s.t. Ω = (∞,∞] and ∀R ∈ R : R =
⋃n

i=1(ai, bi] with −∞ ≤ ai <

bi ≤ ∞

∀R ∈ R as defined above, we have R ∈ Ω

further, R satisfies the 3 properties of a field:

1. Ω = (−∞, a] ∪ (a,∞] ⇒ Ω ∈ R

φ = union of nothing ⇒ φ ∈ R

2. take R1, R2 ∈ R, with R1 =
⋃n

i=1(ai, bi] and R2 =
⋃m

j=1(cj, dj]

R1 ∪R2 = (
⋃n

i=1(ai, bi]) ∪
(⋃m

j=1(cj, dj]
)

⇒ R1 ∪R2 ∈ R (as this is again a

finite union of intervals)

R1 ∩ R2 = (
⋃n

i=1(ai, bi]) ∩
(⋃m

j=1(cj, dj]
)

=
⋃

i,j [(ai, bi] ∩ (cj, dj]]. This follows

from the distributive law. So R1 ∩ R2 is again a finite union of intervals of the

form (a, b] ⇒ R1 ∩R2 ∈ R

3. take R1 =
⋃n

i=1(ai, bi], then Rc
1 =

⋂n
i=1(ai, bi]

c. Now for every Ai = (ai, bi] we

jave Ac
i = (−∞, ai] ∪ (bi,∞], thus Ac

i ∈ R (this follows from property 2). Since

by mathematical induction one can show that property 2 holds for every finite

number of sets in R, we can conclude that Rc
1 =

⋂n
i=1 Ac

i ∈ R.
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Easy 4 (Test Feb-05), 1.16 (Notes Feb-01) 3

Problem: Let C = (C1, C2, . . . , Cm) be a finite partition of Ω. Show that

R :=
{⋃

i∈α

Ci : α ⊆ (1, . . . ,m)
}

is a field on Ω and that it is the smallest field containing C.

——

C = (C1, . . . , Cm) finite partition of Ω

is a generating partition of R; R :=
{⋃

i∈α Ci : α ⊆ (1, . . . ,m)
}

(a) Show that R is a field on Ω:

1. by def. of partition:
⋃m

i=1 = Ω ⇒ Ω ∈ R

φ = union of nothing ⇒ φ ∈ R

2. take R1 =
⋃

i∈α1
Ci and R2 =

⋃
j∈α2

Cj, quadα1, α2 ⊆ (1, . . . ,m). Then α1∪α2 ⊆

(1, . . . ,m) and α1 ∩ α2 ⊆ (1, . . . ,m)

R1 ∪R2 =
⋃

k∈(α1∪α2) Ck ∈ R

R1 ∩R2 =
⋂

l∈(α1∩α2) Cl ∈ R

3. take R1 =
⋃

i∈α1
Ci. Then Rc

1 =
⋃

i∈αc
1
Ci ∈ R as α1 ⊆ (1, . . . ,m) ⇒ αc

1 ⊆

(1, . . . ,m)

(b) Show that R is the smallest field containing C: Let F be any field s.t.

F ⊇ C. Then F contains unions of elements in C ⇒ F ⊇ R ∀F ⊇ C!

Easy 5 (Test Feb-05), 1.18 (Notes Feb-01) 3

Problem: Let R be a finite field and let C = {C1, C2, . . . , Cm} be the

generating partition. Show that for every choice of numbers ai ≥ 0 there

exists exactly one content µ|R such that µ(Ci) = ai.
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——

Correct solution by Prof. Strasser:

If there exists a content µ|R such that µ(Ci) = ai then by additivity of a content

it must be true that

D =
⋃
j∈α

Cj implies µ(D) =
∑
j∈α

µ(Cj) =
∑
j∈α

aj

This shows that there is at most one content with the desired property. But we have

also to show there is a content at all ! Therefore we have to take this equation as a

preliminary definition and then try to show that this definition satisfies the properties

of a content.

It is certailny nonnegative and it is obvious that µ ≥ 0. So we need only show that

it is additive. For this let D1 and D2 be disjoint sets in R such that

D1 =
⋃

j∈α1

Cj and D2 =
⋃

j∈α2

Cj

where in view of disjointness we have α1 ∩ α2 = ∅. Then

µ(D1 ∪D2) = µ(
⋃

j∈α1∪α2

Cj) =
∑

j∈α1∪α2

aj =
∑
j∈α1

aj +
∑
j∈α2

aj = µ(D1) + µ(D2).

Easy 6a (Test Feb-05), 1.23 (Notes Feb-01) 3

Problem: (a) Let (Ω,F) be any measurable space. Let x ∈ Ω some point

and keep it fixed. For every A ∈ F define

δx(A) =

 1 whenever x ∈ A

0 whenever x 6∈ A

Show that δx : A 7→ δx(A) is a measure (the one-point measure at the point

x).

(b) Show that every finite linear combination of measures with nonnegative

coefficients is a measure.
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——

We already know that :(Ω, F ) is a σ - fields therefore we need just to show that δ

is a σ - additive content.

One can simply check the condition of a σ -additive content.

Having Taken any sequence of disjoint Ais it is obvious that ( x belongs just to one

Ai) OR ( X does not belong to any Ai). so we have two cases:

1) if x ∈ Ak then x6∈ Aj , j 6= k then µ(
⋃

Ai) = 1 which is equal to µ(Ak) +∑
j 6=k µ(Aj)=

∑
µ(Ai)

2) if ∀i x 6∈ Ai then it obvious that x 6∈
⋃

(Ai) therefore µ(
⋃

Ai) = 0. On the other

hand µ(Ai) = 0 for all i. ⇒ µ(
⋃

Ai) =
∑

µ(Ai)

Easy 6b (Test Feb-05), 1.24a (Notes Feb-01) 7

Prof. Strasser: basically OK. discuss also the remaining properties of a

measure, not only additivity.

Problem:

——

First we prove it for the case of two measure. Take µ1 and µ2 as two measures on

the same σ field. Assume that µ3 is a linear combination of them i.e µ3 = α1µ1 +

α2µ2.

µ3(
⋃

Ai) = α1µ1(
⋃

Ai) + α2µ2(
⋃

Ai) = α1

∑
µ1(Ai) + α2

∑
µ2(Ai) =

∑
α1µ1(Ai)

+
∑

α2µ2(Ai) =
∑

(α1µ1(Ai) + α1µ1(Ai)) =
∑

µ3(Ai)

The case of more than two measures is a natural extension of the previous proof.

We already know that it is true for two measures. Also if it is true for n measures

then for the case of n+1 measures, the problem is equal to the sum of first n measures

and the measure (n + 1)th. The sum of the first n measure is a measure itself so the

problem is converted to the case of sum of two measures which we did it. So it has

been proved by induction.
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Easy 7 (Test Feb-05), 1.30 (Notes Feb-01) 7

Prof. Strasser: is not OK: the solution on the blackbord in the exercise

lesson was OK I suppose there should be a correct handwritten version.

Problem: Show that the σ-field on N which is generated by the one-point

sets of N is F = 2N.

——

Since N is a countable set we can use the idea similar to the problem no 1.16 . it

is obvious that the collection of all Natural numbers , called S here, is a partition of

N consisting of one-point sets.

S= {Ci : Ci = i, i ∈ N}

On the other hand and according to the 1.16 (supposed to has been solved before)

2N = {
⋃

i∈N Ci} is the smallest field containing S. also 2N is a σ field. Therefore 2N is

generated by N.

Easy 8 (Test Feb-05), 2.3 (Notes Feb-01) 7

Prof. Strasser: This is not an answer but only a hint.

Problem: Let f : Ω → R be measurable. Show that µf is a measure on

B.

——

To prove that µf is a measure we should show that it is a σ additive content.

µf (
⋃

Ai) = µ(f ∈
⋃

Ai). On the other hand we know that if all Ais are disjoint

then f belongs to at most one of them. Similar to what we have shown in exercise 1.23

(E6a) one can easily show that µf is a σ additive content.
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Easy 9 (Test Feb-05), 2.4 (Notes Feb-01) 7

Prof. Strasser: (a) is OK but too long, (b) is missing

Problem: Let Ω,F , µ) be a measure space and let f = 1A where A ⊆ Ω.

(a) Show that f is F -measurable iff A ∈ F .

(b) Find µf .

——

(Ω, F, µ) - measure space, f= 1A=

 1, ω ∈ A, A ⊆ Ω

0, ω 6∈ A

a) f is F-meas. iff A ∈ F

(i) Let f be F-meas. Suppose A 6∈ F

Since f is F-meas. we we have ∀B ∈ β (f ∈ B) = f−1(B) ∈ F

But f−1(B) =



Ω, 0, 1 ∈ β

Ac, 0 ∈ β, 1 6∈ β

A, 0 6∈ β, 1 ∈ β

φ, 0, 1 6∈ β

which contradicts the assumption that A 6∈ F.

(ii) Now let A ∈ F. We need to show f−1(B) ∈ F. Since

f= 1A=

 1, ω ∈ A, A ⊆ Ω

0, ω 6∈ A

we had f−1(B) =



Ω, 0, 1 ∈ β

Ac, 0 ∈ β, 1 6∈ β

A, 0 6∈ β, 1 ∈ β

φ, 0, 1 6∈ β

Since F is a σ-field, Ω ∈ F and Ωc = φ ∈ F. Since we assumed A∈F , Ac ∈ F. Hence

f−1(B) ∈ F and f=F-meas.
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Easy 10 (Test Feb-05), 2.5 (Notes Feb-01) 7

Prof. Strasser: (a) is OK, but you should state that you are using the

canonical representation and explain what this is. (b) is wrong. the answer

is µf (B) = µ(f ∈ B) =
∑

i:ai∈B µ(Fi) =
∑

µ(Fi)δai
(B)

Problem: Let Ω,F , µ) be a measure space and let f : Ω → R be a simple

function.

(a) Show that f is F -measurable iff all sets of the canonical representation

are in F .

(b) Find µf .

——

a f is F -measurable iff Fi ∈ F ∀i; f =
∑n

i=1 ai1Fi
.

• ⇒ Let f be F -measurable and suppose that for some j Fj /∈ F . But since

{a1, . . . , an} are distinct values and f is F -measurable, f−1(ai) ∈ F ∀i. But then

f−1(aj) ∈ F by F -measurability of f . But this contradicts Fj /∈ F .

• ⇐ Now let Fi ∈ F ∀i = 1, . . . , n. If f is F -measurable, then we must have

f−1(B) ∈ F . Since f =
∑n

i=1 ai1Fi
with ai 6= aj ∀i 6= j, we must have f−1(ai) ∈

F ∀i. But this follows easily since (f−1(ai)) = Fi ∈ F .

Hence, f is F -measurable.

b µf (B) = µ(f ∈ B) = µ(f−1(B))

Let fi := ai1Fi
, then f =

∑n
i=1 ai1Fi

=
∑n

i=1 fi. By definition 1Fi
= 1 for w ∈ Fi

and 0 otherwise.

Then for each fi we have:

f−1
i (B) =

 Fi ai ∈ B ∀i = 1, . . . , n

F c
i ai /∈ B
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and

µ
(
f−1

i (B)
)

=

 µ(Fi) ai ∈ B

µ(F c
i ) ai /∈ B

Then µf (B) =
∑n

i=1 µ
(
f−1

i (B)
)
.

Easy 11 (Test Feb-05), 2.22 (Notes Feb-01) 7

Prof. Strasser: (a) OK. It would sufficient to observe that F(x+1/n)-

¿F(x). (b) Equality on the intervals is not euqlity of measures. Use the

measure extension theorem to shoe equality of measures.

Problem: (a) Show that any distribution function is right-continuous.

(b) Show that the distribution PX = λF .

——

Let X be a random variable. Then the function FX : < 7→ [0,∞] defined by

FX(x) := P (X ≤ x) , x ∈ <

is the distribution function of X. The distribution of X is PX , i.e. the image of P under

X defined by

PX(B) := P (X−1(B)) = P (X ∈ B), B ∈ B

or equivalently

PX(B) := P (X−1(B)) = P ({ω ∈ Ω : X(ω) ∈ B}).

Thus the distribution function FX determines the values of the distribution PXon

intervals by

PX((a, b]) = F (b)− F (a).

(a) Show that any distribution function is right-continuous.
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Fix x ∈ < and for n ∈ ℵ set Bn = {ω : X(ω) ≤ x + 1
n
}. Then B1 ⊇ B2 . . . and⋂

n Bn = {ω : X(ω) ≤ x}. It follows that by Lemma 1.7

P (Bn) → P ({ω : X(ω) ≤ x}) = FX(x)

Let ε > 0 be given and let n0 be such that |P (Bn0)− FX(x)| < ε. Then we have

0 ≤ P (Bn0)− FX(x) < ε

which means that 0 ≤ FX(x + 1
n0

)− FX(x) < ε. Let 0 < h < 1
n0

. Then we get

0 ≤ FX(x + h)− FX(x)

≤ FX(x +
1

n0
)− FX(x)

< ε

(b) Show that the distribution PX = λF . Let λF denote a right-continuous (left

open, right-closed) increasing function. Then λF ((a, b]) = F (b) − F (a) From above

(and section 2.4) PX((a, b]) = F (b)− F (a) = λF ((a, b]). Which implies that PX = λF

Easy 12 (Test Feb-05), 3.6 (Notes Feb-01) 3

Problem: Let (Ω,F , µ) be a measure space and let g ∈ L(F). Then for

every f ∈ S+(B) ∫
f ◦ g dµ =

∫
f dµg

——

Let (Ω,F , µ) be a measure space and let g ∈ L(F) Then for every f ∈ S+(B)∫
f ◦ g dµ =

∫
f dµg

Proof: As f ∈ S+(B) we can define

f =
n∑

i=1

αi1Bi
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Then

f ◦ g(ω) = f(g(ω)) =
n∑

i=1

αi1g(ω)∈Bi
=

n∑
i=1

αi1g−1(Bi)

According to definition 3.1∫
f ◦ gdµ =

n∑
i=1

αiµ(g−1(Bi)) =
n∑

i=1

αiµ
g(Bi) =

∫
fdµg

Easy 13 (Test Feb-05), 3.7 (Notes Feb-01) 7

Prof. Strasser: Omit
∫

fdF and all is OK

Problem: Let (Ω,F , P ) be a probability space and X a random variable

with distribution function F . Explain the formula

E(f ◦X) =

∫
f dλF

——

Let (Ω,F , P ) a probability space and X a random variable. Explain the formula∫
A

E(f ◦X) =

∫
f dλF

Proof: According to the definition of expectation we have

E(f ◦X) =

∫
f ◦XdP

From the transformation theorem 3.5 we can rewrite this equation into∫
f ◦XdP =

∫
fdPX

where PX is the probability distribution of X and can be substituted with the distri-

bution function F ∫
fdPX =

∫
fdF
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Recall the Lebesgue-Stieltjes content λF |<, which is the usual way to define probability

distribution by distribution functions in probability theory, so we obtain∫
fdF =

∫
fdλF

Combining the equations above we finally end up with

E(f ◦X) =

∫
fdλF

Easy 14 (Test Feb-05), 3.18 (Notes Feb-01) 3

Problem: Show that f ∈ L(F) is µ-integrable iff
∫
|f | dµ < ∞.

——

Let f ∈ L(F) be µ-integrable. Then by definition f+ and f− are µ-integrable,

hence we get for the integral of |f | = f+ + f−∫
|f |dµ =

∫
(f+ + f−)dµ =

∫
f+dµ +

∫
f−dµ < ∞ .

Now suppose
∫
|f |dµ < ∞. Then

∞ >

∫
|f |dµ =

∫
(f+ + f−)dµ =

∫
f+dµ +

∫
f−dµ

and ∫
f+dµ < ∞ and

∫
f−dµ < ∞ .

Thus (by definition) f is µ-integrable.

Easy 15 (Test Feb-05), 3.24 (Notes Feb-01) 3

Problem: Let f be a measurable function and assume that there is an

integrable function g such that |f | ≤ g. Then f is integrable.
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——

By the isotonic property we know
∫
|f |dµ ≤

∫
gdµ. But g is integrable, hence f is

integrable too:
∫
|f |dµ ≤

∫
gdµ < ∞.

Easy 16 (Test Feb-05), 4.5 (Notes Feb-01) 3

Problem: Let (Ω,F , µ) be a measure space and let f ∈ L+(F). Show

that ν : A 7→
∫

A
f dµ, A ∈ F is a measure.

——

Let (Ω,F , µ) be a measure space and let f ∈ L+(F). Show that ν : A 7→∫
A

f dµ, A ∈ F is a measure. Proof:(i)

ν(A) =

∫
A

fdµ =

∫
1Afdµ ≥ 0 ∀A ∈ F

⇒ ν(A) ∈ [0,∞] ∀A ∈ F

(ii)

ν(φ)

∫
φ

fdµ =

∫
1φfdµ =

∫
0 ∗ fdµ =

∫
0 ∗ dµ = 0.

Since

1φ(ω) = 0 ∀ω ∈ Ω

(iii) Let Ai ∈ F be disjoint, then

ν(
∞⋃
i=1

Ai) =

∫
∞S

i=1
Ai

fdµ =

∫
1 ∞S

i=1
Ai

fdµ =

∫
∞P

i=1
1Ai

fdµ =

∫
(
∞∑
i=1

1Ai
f)dµ

= 1

∞∑
i=1

∫
1Ai

fdµ =
∞∑
i=1

∫
Ai

fdµ =
∞∑
i=1

ν(Ai)

Ad footnote 1:

f ∈ L+(F) ⇒ 1Ak
f ∈ L+(F)

11
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Which implies that
n∑

k=1

1Ak
f ∈ L+(F).

Also
∑n

k=1 1Ak
f ↑ f as n →∞. Which implies that

∞∑
k=1

∫
1Ak

fdµ = lim
n→∞

n∑
k=1

∫
1Ak

fdµ

= lim
n→∞

∫ n∑
k=1

1Ak
fdµ

Beppo Levi︷︸︸︷
= lim

n→∞

n∑
k=1

1Ak
fdµ =

∫ ∞∑
k=1

1Ak
fdµ

Easy 17 (Test Feb-05), 4.9 (Notes Feb-01) 3

Problem: Let ν = fµ. Show that µ(A) = 0 implies ν(A) = 0, A ∈ F .

——

Let ν = fµ. Show that µ(A) = 0 implies ν(A) = 0, A ∈ F .

Proof:

ν : A 7→
∫

A

fdµ, A ∈ F

ν = fµ and f :=
dν

dµ

We know from Bauer (German version page 81) that∫
fdµ = 0 ⇔ f = 0µ− a.e.

(This lemma is similar to our definition on page 22 (latest version script)) From Bauer

we see that this lemma can be rewritten in the following way for some set N := {f 6=

0} = {f > 0} ∫
N

fdµ = 0 ⇔ µ(N) = 0

Applying this for set A gives obviously

µ(A) = 0 ⇒
∫

A

fdµ = 0
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As ν(A) =
∫

A
fdµ it follows that

ν(A) = 0.

as we were supposed to show.

Easy 18 (Test Feb-05), 4.14 (Notes Feb-01) 3

Problem: Let ν = fµ. Discuss the validity of∫
f dν =

∫
f

dν

dµ
dµ

——

correct version of question and solution by Prof. Strasser

Let ν =
dν

dµ
µ.Discuss the validity of∫

f dν =

∫
f

dν

dµ
dµ.

Hint: Prove it for f ∈ S+(F) and extend it by measure theoretic induction.

Proof: Let f =
∑n

i=1 αi1Ai
Then

∫
f dν =

∑n
i=1 αiν(Ai) Because of

ν(Ai) =

∫
Ai

dν

dµ
dµ

We get ∫
f dν =

n∑
i=1

αi

∫
Ai

dν

dµ
dµ

=
n∑

i=1

∫
αi1Ai

dν

dµ
dµ

=

∫
(

n∑
i=1

1Ai
αi)

dν

dµ
dµ

=

∫
f

dν

dµ
dµ

Now by standard measure theoretic induction we get the validity for nonnegative

measurable functions (use Levi’s theorem) and then for integrable function by applying

the equation to the positive and the negative parts (write down details !)
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Easy 19 (Test Feb-05), 5.2a (Notes Feb-01) 3

Problem: Let X be an indicator random variable. Find σ(X).

——

X = 1A for some A ∈ F (note that 1A ∈ {0, 1}). 1−1
A (0) = AC , 1−1

A (1) = A

Let B ∈ B(R). Then

X−1(B) = (X ∈ B) = (1A ∈ B) =



φ 0 /∈ B, 1 /∈ B

A 0 /∈ B, 1 ∈ B

AC 0 ∈ B, 1 /∈ B

Ω 0 ∈ B, 1 ∈ B

⇒ {(X ∈ B)|B ∈ B(R)} = {φ,A, AC , Ω} =: C

Note that C is a σ-field according to the definitions 1.1 and 1.20 (as of Notes 5/2)

of the script.

⇒ σ(X) = σ((X ∈ B), B ∈ B(R)} = σ(C) = C

since σ(X) is the smallest σ-field containing C (which is a σ-field too!); so σ(X) =

{φ, A, AC , Ω}

Easy 20 (Test Feb-05), 5.2b (Notes Feb-01) 7

Prof. Strasser: is OK (with misprints) but complicated. why don’t you say

it in this way: all inverse images of X are unions of sets in the partition.

we know (from where ?) that these unions constitute a field.

Problem: Let X be a simple random variable. Find σ(X).

——

X ∈ S(F) (= simple measurable function) ⇒ X(Ω) = {a1, . . . , an} ⊂ R
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⇒ X =
∑n

i=1 ai1Ai
, where Ai := X−1(ai) is a partition of Ω.

Lemma: {(X ∈ B)|B ∈ B(R)} = {
⋃

i∈I Ai|I ⊂ {1, . . .}} =: C

proof of ”⊂”: Let B ∈ B(R), I := {i ∈ N |ai ∈ B}

⇒ (X ∈ B) = (
∑n

i=1 1Ai
∈ B) = (

∑n
i=1 1Ai

)−1(B) =
⋃

i∈I Ai

proof of ”⊃”: Let I ⊂ {1, . . . , n}, B := {ai|i ∈ I} ∈ B(R) since B is countable.

⇒
⋃

i∈I Ai = (
∑n

i=1 ai1Ai
)−1(B) = (

∑n
i=1 1Ai

∈ B) = (X ∈ B)

Using this lemma, we have:

σ(X) = σ ((X ∈ B), B ∈ B(R))

= σ

(⋃
i∈I

Ai|I ⊂ {1, . . . , n}

)
= σ(C) = C

since C itself is a σ-field according to the lecture notes (as of 5/2; combining problem

1.16 and definition 1.20).

so σ(X) =

{⋃
i∈I

Ai|I ⊂ {1, . . . , n}

}
= σ(Ai, . . . , An).

Easy 21 (Test Feb-05), 6.3 (Notes Feb-01) 7

Prof. Strasser: That is nonsense. I gave the correct proof at the blackboard.

Problem: Find the conditional expectation given a finite field.

——

We know that every finite field is generated by a partition (here:
⋃m

i=1 Ci). So let

A = σ(C1, . . . , Cm).

Then the conditional expectation of X given A is the following:

E(X/A) =
m∑

i=1

E(X/Ci)1Ci
,
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with

E(X/Ci) =
1

P (Ci)

∫
Ci

XdP.

proof: 1A =
∑m

i=1 1Ci
, so we can write

E(X/A) =

∫
A

XdP =

∫
1AXdP =

m∑
i=1

∫
1Ci

XdP

=
m∑

i=1

∫
Ci

XdP =
m∑

i=1

P (Ci)

P (Ci)

∫
Ci

XdP

=
m∑

i=1

P (Ci)E(X/Ci) =
m∑

i=1

E(X/Ci)1Ci

Easy 22 (Test Feb-05), 6.4a (Notes Feb-01) 3

Problem: Show that E(E(X|A)) = E(X).

——

Let Y = E(X\A). Then

E[E(X\A)] = E(Y )

=

∫
Ω

Y dp (by definition of expectation)

=

∫
Ω

Xdp (by definition of conditional expectation)

= E(X) (by definition of expectation)

Easy 23 (Test Feb-05), 6.11 (Notes Feb-01) 3

Problem: Let X and Y be square integrable. If X is A-measurable and

Y is independent of A then

E(XY |A) = XE(Y ).
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——

From the Redundant Conditioning Theorem 6.9 (lecture notes from 2006-02-01)

we know that if X and Y are square-integrable and X is A-measurable, then

E(XY |A) = XE(Y |A)

Replicating the proof of exercise 6.7c (notes from 2006-02-01), we will now show that

E(Y |A) = E(Y ):

If Y is independent of A ∀A ∈ A, then Y is also independent of 1A

∫
A

E(Y |A)dP =

∫
A

Y dP =

∫
1AY dP

=

∫
E(1A)E(Y )dP =

∫
A

E(Y )dP

⇒ E(Y |A) = E(Y ) P.-a.e. ∀A ∈ A

Therefore XE(Y |A) = XE(Y )

and so E(XY |A) = XE(Y )

Easy 24 (Test Feb-05), 7.13 (Notes Feb-01) 7

Prof. Strasser: is nonsense. The solution was presented correctly on the

blackboard. There should be a correct handwritten solution.

Problem: Let (Xn)n≥0 be adapted. Show that the hitting time or first

passage time

τ = min{k ≥ 0 : Xk ∈ B}

is a stopping time for any B ∈ B.

——
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Let Xn be Fn-measurable; ∀ n and τ = min{k ≥ 0 : Xk ∈ B} ∀B ∈ B Show that

(τ = k) ∈ Fk∀B ∈ B By definition:

(τ = k) = {X1 /∈ B}, {X2} /∈ B . . . {Xk−1}, {Xk ∈ B} (1)

(τ = k) = {X1 /∈ B} ∩ {X2 /∈ B} ∩ . . . ∩ {Xk ∈ B} (2)

(τ = k) = {X1}c ∩ {X2}c ∩ . . . ∩ {Xk ∈ B} ∈ σ(X1, . . . Xk) (3)

Denote the set X = (X1 ∈ B, . . . Xk ∈ B}) Since Xi are Fi-measureable, we have

X−1B ∈ Fk But since (τ = k) = X and from (1),(2) and (3) X−1B ∈ Fk implies that

(τ = k) ∈ Fk. Hence,(τ = k) defines a stopping time.

Easy 25 (Test Feb-05), 7.14 (Notes Feb-01) 3

Problem: Let (Xk) be a sequence adapted to (Fk) and let τ be a finite

stopping time. Then Xτ is a random variable.

——

Let (Xk) be a sequence adapted to (Fk) and let τ be a finite stopping time. Then

Xτ is a random variable.

Let (Xk) = (X1, X2, . . .) for k = 1, 2, . . . and let Fk = σ(X1, X2, . . .) be the past of

the sequence.

(Xk) is adapted to (Fk)k≥0 if (Xk) is (Fk)-measurable for all k. τ : Ω 7→ N0 ∪ {∞}

is a stopping time relative to the filtration if (τ = k) ∈ Fk for all k ∈ N.

Using the causality theorem we get 1τ=k = fk(X1, X2, . . . Xk)

Xτ = Xk for (τ = k)

Xτ =
∞∑

k=0

Xk1(τ=k) with Xk1(τ=k) being a r.v. and thus
∞∑

k=0

Xk1τ=k being a r.v.
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Easy 26 (Test Feb-05), 7.19 (Notes Feb-01) 3

Problem: Let (Sn)n≥0 be a random walk (starting at S0 = 0) with dis-

crete steps +1 and −1. Let τ := min(k ≥ 0 : Sk = −a or Sk = b).

(a) Calculate E(Sτ ).

(b) Use Wald’s equation E(Sτ ) = µE(τ) to obtain E(τ) for a non-

symmetric random walk.

(c) Use equation E(S2
τ ) = E(τ) to find E(τ) for any random walk.

——

a Let τ−a and τb denote the hitting times of the one-sided boundaries −a and b,

so (Sτ = −a) = (τ−a < τb) and (Sτ = b) = (τ−a > τb)

By discussion 7.2 (as of 5/2) we receive (noting that S0 = 0) and setting initial

wealth V0 to a, we get:

P (Sτ = −a) = P (τ−a < τb) = P (τ0 < τa+b|V0 = a) = q0(a)

P (Sτ = b) = P (τb < τ−a) = P (τa+b < τ0|V0 = a) = qa+b(a)

q0(a) →


( p

1−p)
b
−1

( p
1−p)

a+b
−1

p 6= 1/2

b
a+b

p = 1/2

and

qa+b(a) →


( 1−p

p )
a
−1

( 1−p
p )

a+b
−1

p 6= 1/2

a
a+b

p = 1/2

We also know that E(Sτ ) = bP (Sτ = b)− aP (Sτ = −a) = bqa+b(a)− aq0(a).

Using this we receive for p 6= 1/2:

E(Sτ ) = b

(
1−p

p

)a

− 1(
1−p

p

)a+b

− 1
− a

(
p

1−p

)b

− 1(
p

1−p

)a+b

− 1

and for p = 1/2:

E(Sτ ) = b
a

a + b
− a

b

a + b
= 0
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b Wald’s Equation: E(Sτ ) = µE(τ)

By discussion 7.17 (as of 5/2) we can use the approximation E(Sτ∩n = µE(τ ∩

n), which converges by Lebesgue’s dominated convergence theorem and Beppo Levi’s

Theorem, and hence Wald’s Equation is valid in our case. So for p 6= 1/2 we get:

E(τ) =
E(Sτ )

µ
=

b

(
1−p

p

)a

− 1(
1−p

p

)a+b

− 1
− a

(
p

1−p

)b

− 1(
p

1−p

)a+b

− 1

 1

2p− 1
.

c By a), we know that E(Sτ ) = bP (Sτ = b)− aP (Sτ = −a). So

E(S2
τ ) = b2P (Sτ = b)− a2P (Sτ = −a)

= b2qa+b(a)− a2q0(a)

For p 6= 1/2, we receive

E(S2
τ ) = b2

(
1−p

p

)a

− 1(
1−p

p

)a+b

− 1
− a2

(
p

1−p

)b

− 1(
p

1−p

)a+b

− 1
= E(τ)

For p = 1/2, we get

E(S2
τ ) = b2 a

a + b
− a2 b

a + b
=

ab(b− a)

a + b
= E(τ)

Easy 27 (Test Feb-05), 7.20 (Notes Feb-01) 3

Problem: Let (Sk) be a symmetric random walk and let τ := min(k ≥

0 : Sk = 1). Show that E(τ) = ∞.

——

Prof. Strasser: OK, tell us what is E(Sτ )
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Let (Sk) be a symmetric random walk and let τ := min(k ≥ 0 : Sk = 1). Show

that E(τ) = ∞.

Assume that E(τ) < ∞, so τ is a bounded stopping time. Hence, we may apply

Wald’s equation

E(Sτ ) = µE(τ)

So we get E(τ) = E(Sτ

µ
But µ = 0.5 ∗ (1) + 0.5 ∗ (−1) = 0, so E(τ) = ∞ Which is a

contradiction.

Easy 28 (Test Feb-05), 7.35 (Notes Feb-01) 7

Prof. Strasser: this OK but the complicated way. if you use the definition

of a martingale in terms of cond exp things are much easier and very similar

to the martingale proof of the wiener process

Problem: Let Sn = X1+X2+· · ·+Xn where (Xi) are independent identi-

cally distributed (i.i.d.) and integrable random variables with E(Xi) = µ.

(a) Show that (Sn) is a martingale iff µ = 0.

(b) Which kind of martingale property hold if µ 6= 0 ?

——

a) Show that (Sn) is a martingale iff µ = 0.

Let σ and τ be discrete and bounded stopping times (with σ ≤ τ ≤ K).

From the proof of Theorem 7.26 (Notes 5/2) (noting that Hi is 1 for all i) we know

that Sτ − Sσ =
∑K

i=1 Xi1σ<i≤τ . So E(Sτ )− E(Sσ) = E(Sτ − Sσ) = µ
∑K

i=1 E(1σ<i≤τ )

as Xi is i.i.d. and independent of 1σ<i≤τ .

Applying Definition 7.29 (Notes 5/2), for a martingale we need this expression to

be zero which is true iff µ = 0, as
∑K

i=1 E(1σ<i≤τ ) ≥ 0 with the equality being strict if

σ < τ .

b) Which kind of martingale property hold if µ 6= 0 ?
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Arguing with the same equation as before:

• If µ < 0, then we have a submartingale as E(Sτ )− E(Sσ) ≤ 0.

• If µ < 0, then we have a supermartingale as E(Sτ )− E(Sσ) ≥ 0.

Easy 29 (Test Feb-05), 7.37 (Notes Feb-01) 3

Problem: Let Sn = X1 +X2 + · · ·+Xn where (Xi) are independent iden-

tically distributed (i.i.d.) and integrable random variables with E(Xi) = 0.

Let (Hk) be a predictable (with respect to the history of (Sn)) sequence of

integrable random variables. Show that

Vn := V0 +
n∑

k=1

Hk(Sk − Sk−1)

is a martingale.

——

By Theorem 7.33 (notes 5/2), Vn being a martingale is equivalent to E (Vn|Fn−1) =

Vn−1, where Fn is the σ-field representing the history of (Sn).

By definition of Sn, Sk − Sk−1 = Xk.

E (Vn|Fn−1) = E

(
V0 +

n∑
k=1

Hk(Sk − Sk−1)|Fn−1

)

= E

(
V0 +

n−1∑
k=1

HkXk|Fn−1

)
+ E (HnXn|Fn−1)

= E (Vn−1|Fn−1) + E (HnXn|Fn−1)

= Vn−1 + HnE (Xn) = Vn−1.

Using that Vn−1 is Fn−1-measurable, that Hn is predictable with respect to the history

of (Sn) and that Xn is independent of Fn−1 (as the Xi are i.i.d.). So we can use the

Law of redundant conditioning.
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Easy 30 (Test Feb-05), 8.4 (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process. Show that Xt := −Wt, t ≥ 0,

is a Wiener process, too.

——

Show that Xt := −Wt , t ≥ 0 is a Wiener process.

Proof: We just need to verify the axioms stated in 8.1

(1) , X0 = −W0 = 0

(2) The increment Xt −Xs = −Wt + Ws = −(Wt −Ws)

Since we know, for s<t , Wt − Ws ∼ N(0, t − s) and is mutually independent for

non-overlapping intervals, −(Wt −Ws) ∼ N(0, t − s) and mutually independent for

non-overlapping intervals too.

(3) Continuity of all paths (P-a.s) ∀ω ∈ Ω

This follows that, if Wt is continuous and g(x)=-x is a continuous function then Xt :=

g(Wt) = Wt is continuous by composition law. So we have done.

Easy 31 (Test Feb-05), see Thm 8.18 (Notes Feb-01)

Problem: Let (Wt)t≥0 be a Wiener process. Show that (Wt)t≥0 and Xt :=

W 2
t − t are martingales w.r.t the history of (Wt)t≥0.

——

First part: Show that (Wt)t≥0 is a martingale w.r.t. its history,

i.e. E(Wt|Fs) = Ws ∀s < t.
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Take s, t arbitrary such that 0 ≥ s < t.

E(Wt|Fs) = E((Wt −Ws) + Ws|Fs) by simple albegra

= E(Wt −Ws|Fs) + E(Ws|Fs) by linearity of E

= E(Wt −Ws|Fs) + Ws because Ws is Fs-measurable

= E(Wt −Ws + Ws since increments are independent of Fs

= 0 + Ws since increments have expectation zero.

Since s, t were chosen arbitrarily, we have therefore E(Wt|Fs) = Ws ∀s < t. QED

Second part: Show that Xt := W 2
t − t is a martingale w.r.t. the history of (Wt)t≥0

i.e. E(W 2
t − t|Fs) = W 2

s − s ∀s < t.

First note that by simple algebra

(Wt −Ws)
2 = W 2

t − 2WtWs + W 2
s = W 2

t − 2WtWs + W 2
s + W 2

s −W 2
s =

= (W 2
t −W 2

s )− 2Ws(Wt −Ws).

By linearity of E,

E((Wt −Ws)
2|Fs) = E(W 2

t |Fs)− E(W 2
s |Fs)− 2E(Ws(Wt −Ws)|Fs)

So we have

E(W 2
t |Fs)− E(W 2

s |Fs) = E((Wt −Ws)
2|Fs) + 2E(Ws(Wt −Ws)|Fs)

Due to redundant conditioning

2E(Ws(Wt −Ws)|Fs) = 2WsE(Wt −Ws|Fs) = 2Ws0 = 0

since increments are independent of Fs.

From the independence of the increments of Fs, we further get that the square

of the increments must be independent of Fs as well, and thus we can write

E((Wt −Ws)
2|Fs) = E((Wt −Ws)

2).
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Using V ar(X) = E(X2)− (E(X))2 we can write

E((Wt −Ws)
2) = V ar(Wt −Ws) + (E(Wt −Ws))

2 = (t− s) + 0

by the properties of the Wiener Process.

Putting all this together, we get

E(W 2
t |Fs)− E(W 2

s |Fs) = (t− s) or E(W 2
t |Fs)−W 2

s = (t− s)

since W 2
s is Fs-measurable because (Wt)t≥0 is adapted to its history. By linearity of

E and since t is deterministic, we get E(W 2
t − t|Fs) = W 2

s − s QED

Easy 32 (Test Feb-05), see Thm 8.18 (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process. Show that Xt := exp(aWt −

a2t/2) is a martingale w.r.t the history of (Wt)t≥0.

——

Show that Xt := eaWt−a2t/2 is a martingale w.r.t. the history of (Wt)t≥0

i.e. E(eaWt−a2t/2|Fs) = eaWs−a2s/2 ∀s < t.

By simple algebraic transformations we get

E(eaWt|Fs) = E(ea(Wt−Ws)+aWs |Fs) = E(ea(Wt−Ws)eaWs |Fs).

Since Ws is Fs-measurable, redundant conditioning leads to

E(ea(Wt−Ws)eaWs |Fs) = eaWsE(ea(Wt−Ws)|Fs)

Knowing that increments of the Wiener Process are independent of the past, and

that for a random variable X ∼ N(0, σ2) we have E(eλX) = eλ2σ2/2 we obtain

eaWsE(ea(Wt−Ws)|Fs) = eaWsE(ea(Wt−Ws)) = eaWsea2(t−s)/2

Using the above results and applying simple algebraic transformations and the
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linearity of E, we get

E(eaWt|Fs) = eaWsea2t/2e−a2s/2

⇒ e−a2t/2E(eaWt|Fs) = eaWs−a2s/2

⇒ E(eaWt−a2t/2|Fs) = eaWs−a2s/2 ∀s, t such that s < t. QED

Easy 33 (Test Feb-05), 8.30 (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process and let τa,b be the first passage

time of the boundary f(t) = a + bt, a > 0. Take for granted that

E(e−λτa,b1(τa,b<∞)) = e−a(b+
√

b2+2λ), λ ≥ 0

(a) Find P (τa,b < ∞).

(b) Find E(τa,b).

——

We have E(e−λτa,b .1(τa,b<∞)) = e−a(b+
√

b2+2λ) , λ ≥ 0

(a) Find P(τa,b < ∞)

Solution: We can set λ = −θb + θ2

2
= 0 (we are free to choose θ)

Then we have E(1(τa,b < ∞)) = e−a(b+|b|)

Plus E(1(τa,b<∞)) = P (τa,b < ∞)

Hence P (τa,b < ∞) = e−a(b+|b|)

(i), b < 0, P (τa,b < ∞) = e−a(b−b) = 1

(ii), b = 0, P (τa,b < ∞) = e−a.0 = 1

(iii)b > 0, P (τa,b < ∞) = e−2ab < 1 (∀a, b > 0)
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(b) Find E(τa,b)

Solution: (i) if b > 0, P (τa,b < ∞) = e−2ab < 1 ⇒ τa,b = ∞ with some strictly positive

probability ⇒ E(τa,b = ∞)

(ii) Let τa,b < ∞ , firstly, we have 1(τa,b<∞)(ω) = 1 ∀ω ∈ Ω

Hence E(e−λτa,b .1) = e−a(b+
√

b2+λ)

We differentiate both sides wrt λ (assume we can introduce E(.) and differentiation)

E(τa,be
−λτa,b) = e−a(b+

√
b2+λ).( a√

b2+2λ
)

Then set λ=0 , E(τa,b) = e−a(b+|b|). a
|b| =

 ∞, b = 0

a
|b| , b < 0

Easy 34 (Test Feb-05), 8.35 (Notes Feb-01) 3

Problem: Find the distribution of maxs≤t Ws. (Apply the formula for the

distribution function of τa,b.)

——

Prof. Strasser: You did not use the hint, but it is OK

Find the distribution of maxs≤t Ws. (Apply the formula for the distribution func-

tion of τa,b.)

Proof: Use the reflection principle (although not subject of the exam). If x = 0,

P [max
s≤t

Ws ≥ y, Wt ≤ y] = P (Wt ≥ y)
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P (max
s≤t

Ws ≥ y) = P (max
s

Ws ≥ y, Wt ≤ y) + P (max
s

Ws ≥ y, Wt > y)

= P (max
s

Ws ≥ y, Wt ≤ y) + P (Wt > y)

= 2P (Wt ≥ y)

Then the distribution of the max is

P (max
s≤t

Ws ≤ y) = 1− 2P (Wt ≥ y) = 1− 2(1− φ(
y√
t
))

Easy 35 (Test Feb-05), 8.36b (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process, c, d > 0 and define

σc,d = inf{t : Wt 6∈ (−c, d)}

Show that P (σc,d < ∞) = 1.

——

c, d > 0. Define

δc,d:=inf{f : Wt 6∈ (−c, d)}

Show that P(δc,d < ∞) = 1

Proof: δc,d:=inf {t : Wt ≥ d, orWt ≤ −c}

=inf {t : Wt ≥ d}
⋃

inf{t : −Wt ≥ c}

= δd,0

⋃
τc,0

Where τa,b := inf{t : Wt ≥ a + bt}

Set b=0 , we get horizontal boundaries

Hence {δc,d < ∞} = {τd,0 < ∞}
⋃
{τc,0 < ∞}
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⇒ {τd,0 < ∞} ⊆ {δc,d < ∞}

⇒ P (τd,0 < ∞) ≤ P (δc,d < ∞)

Since from #33 we have showed that P (τc,d < ∞) = 1 if b=0

we end up with P (δc,d < ∞) ≥ P (τd,0 < ∞) = 1

However P (δc,d < ∞) ≤ 1

in the end P (δc,d < ∞) = 1
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2 Intermediate Questions

Intermediate 1 (Test Feb-05), 1.9 (Notes Feb-01) 3

Problem: Let Ω = (−∞,∞] and let R be the system of subsets arising as

unions of finitely many intervals of the form (a, b] where −∞ ≤ a < b ≤ ∞

(left-open and right-closed intervals). Show that each element B ∈ R can

be written as a union of disjoint intervals

B =
n⋃

i=1

(ai, bi] (4)

where −∞ ≤ a1 < b1 ≤ a2 < b2 ≤ a3 < . . . < bn−1 ≤ an < bn ≤ ∞.

——

Prof Strasser: OK, induction arguments can be omitted

a H :=
{

Hi =
⋃n

j=1 Iij, where Iis ∩ Iit = φ ∀s 6= t
}
⊆ R where Iij is defined as

interval of type (a, b] with −∞ ≤ a ≤ b ≤ ∞ (so Iij can be equal to the empty set)

Now we want to show that H is closed under intersections:
⋂m

i=1 Hi =⋂m
i=1

⋃n
j=1 Iij ∈ H.

proof: Consider an arbitrary w ∈
⋂m

i=1

⋃n
j=1 Iij ∈ H. That such a w exists (if the

intersection is empty, then we are done as the empty set is also an interval) means that

∀i∃ji s.t. w ∈ Iiji
⇔ ∃j1, . . . , jm s.t. w ∈

⋂m
i=1 Iiji

⇔ w ∈
⋃

j1,...,jm

⋂m
i=1 Iiji

.

So we have that
⋂m

i=1 Hi =
⋂m

i=1

⋃n
j=1 Iij =

⋃
j1,...,jm

⋂m
i=1 Iiji

.

• It’s obvious that
⋂m

i=1 Hi is a union of intervals of the form (ai, bi] or the empty

set. This is because
⋂m

i=1 Iiji
is the intersection of m intervals and the intersection

of intervals has to be an interval (or the empty set) again (trivial for m = 2 and

then extended by induction).
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• These intervals are pairwise disjoint, i.e. (j1, . . . , jm) 6= (k1, . . . , km) ⇒⋂m
i=1 Iiji

∩
⋂m

i=1 Iiki
= φ.

Just let j1 6= k1.
⋂m

i=1 Iiji
⊆ I1j1 and

⋂m
i=1 Iiki

⊆ I1j1 . By assumption we have

Iis ∩ Iit = φ ∀s 6= t and hence I1j1 ∩ I1k1 = φ.

b Now we want to show that every finite union of intervals can be written as

n⋃
i=1

Ii = I1 ∪ (I2\I1) ∪ (I3\(I1 ∪ I2)) ∪ . . . ∪ (In\(I1 ∪ I2 ∪ . . . ∪ In−1))

where the kth set is (Ik\
⋃k−1

j=1 Ij) ∈ H as H is closed under intersection and

(Ik\
⋃k−1

j=1 Ij) = (Ik ∩ (
⋃k−1

j=1 Ij)
c) = (Ik ∩ (

⋂k−1
j=1 Ic

j )) is a finite intersection of inter-

vals.

proof by induction:

n=2:
⋃n

i=1 Ii = I1 ∪ I2 and I1 ∪ (I2\I1) = I1 ∪ (I2 ∪ Ic
1) = (I1 ∪ I2) ∩ Ω = I1 ∪ I2 (the

second equality follows from the distributive law).

Now assume it holds for n = k which means
⋃k

i=1 Ii = I1 ∪ . . . ∪ (Ik\
⋃k−1

j=1 Ij). When

n = k + 1, we have

I1 ∪ (I2\I1) ∪ (I3\(I1 ∪ I2)) ∪ . . . ∪ (In\(I1 ∪ I2 ∪ . . . ∪ In−1))

= I1 ∪ . . . ∪

(
Ik\

k−1⋃
j=1

Ij

)
∪

(
Ik+1\

k⋃
j=1

Ij

)

=
k⋃

j=1

Ij ∪

(
Ik+1 ∩ (

k⋃
j=1

Ij)
c

)

=
k⋃

j=1

Ij ∪ Ik+1 ∩

(
k⋃

j=1

Ij ∪ (
k⋃

j=1

Ij)
c

)

=
k+1⋃
j=1

Ij ∩ Ω =
k+1⋃
j=1

Ij

where we apply the distributive law again.

The only thing left to show is that (Im\
⋃m−1

j=1 Ij) ∩ (Il\
⋃l−1

j=1 Ij) = φ ∀m 6= l

(pairwise disjointness).
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Let m < l. Then(
Im\

m−1⋃
j=1

Ij

)
∩

(
Il\

l−1⋃
j=1

Ij

)
=

(
Im\

m−1⋃
j=1

Ij

)
∩

(
Il\((

m−1⋃
j=1

Ij) ∩ Im ∩ . . . ∩ Il−1)

)

=

(
Im ∩

m−1⋂
j=1

Ic
j

)
∩

(
Il ∩ (

m−1⋃
j=1

Ic
j ) ∩ Ic

m ∩ . . . ∩ Ic
l−1

)
= φ

as Im is intersected with Ic
m.

Intermediate 2 (Test Feb-05), 1.17 (Notes Feb-01) 3

Problem: Show that every finite field is generated by a partition.

——

let R be a finite field on Ω; so R = {φ, Ω, R1, . . . , Rn}; for any x ∈ Ω define

Ax :=
⋂
{A ∈ R : x ∈ A}

further, A ∈ R is an ”atom” if A 6= φ and φ 6= B ⊆ A, B ∈ R ⇒ B = A.

to show ∀x ∈ Ω, Ax is the unique atom containing x

• Ax is an atom: Suppose not, then ∃B ∈ R s.t. x ∈ B, B ⊆ Ax, B 6= A and B

an atom; by def. of Ax, Ax ⊆ B; that’s a contradiction ⇒ B = Ax ⇒ Ax is an

atom

• Ax is unique atom containing x: Suppose not, then ∃C ∈ R s.t. x ∈ C and C

an atom; again by def. of Ax, Ax ⊆ C, but since C is an atom, Ax = C ⇒ Ax is

the unique atom containing x!

to show C = {Ax : x ∈ Ω} is a partition of Ω and C generates R!

• ∀x ∈ Ω: Ax 6= φ; obvious as x ∈ Ax per definition
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• Since the number of sets in R is finite, and Ax are intersections of these finite

sets, the number of Ax must also be finite: C = {Ax1 , . . . , Axm}

• ∀x ∈ Ω we have Ax ∈ R; obvious as Ax is a finite intersection of sets of R (by

definition of a field)

• ∀Ax we have Ax ⊆ Ω: by def. of Ax and fact that Ω ∈ R we have that Ω =⋃
x∈Ω{x} ⊆

⋃
x∈Ω{Ax} ⊆ Ω ⇒

⋃
x∈Ω{Ax} = Ω

• for any Axi
6= Axj

we have (Axi
∩Axj

) = φ: Suppose that (Axi
∩Axj

) 6= φ. Then

∃z ∈ Ω s.t. z ∈ (Axi
∩ Axj

). So it must hold that for Az =
⋂
{A ∈ R : z ∈ A},

Az ⊆ Axi
and Az ⊆ Axj

. Since Az, Axj
and Axi

are atoms, this implies φ 6=

Az = Axj
and φ 6= Az = Axj

. From there we can deduce that Axi
= Axj

which

is a contradiction.

so C = {Ax : x ∈ Ω} is a partition of Ω containing m elements as we have Ax 6= φ∀x ∈

Ω,
⋃

x∈Ω{Ax} = Ω and (Axi
∩ Axj

) = φ∀Axi
6= Axj

.

For any Ri ∈ R we can write: Ri =
⋃

i∈αi
Axi

where αi : Ω → (1, . . . ,m) and

αi(x) = {j : x ∈ Axj
}

• any element of R can be written as the finite union of elements of C

• C = {Ax : x ∈ Ω} generates the finite field R (C = {Ax1 , . . . , Axm}

Intermediate 3 (Test Feb-05), 1.21 (Notes Feb-01) 3

Problem: (a) A field F is a σ-field iff

(Fi)i∈N ⊆ F ⇒
⋂
i∈N

Ai ∈ F

(b) A field F is a σ-field iff the union of every increasing (decreasing)

sequence of sets in F is in F , too.
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(c) A field F is a σ-field iff the union of every pairwise disjoint sequence of

sets in F is in F , too.

——

(a) Suppose F is a σ-field. Then all AC
i ∈ F ,

⋃
i∈N AC

i ∈ F and by de Morgan’s laws

⋂
i∈N

Ai =

(⋃
i∈N

AC
i

)C

∈ F .

Now suppose (Ai)i∈N ⊆ F ⇒
⋂

i∈N Ai ∈ F . Now take any (Ai)i∈N ⊆ F . By

nearly the same arguments (the complements are in F , because F is is field)

⋃
i∈N

Ai =

(⋂
i∈N

AC
i

)C

∈ F .

(b) Suppose F is a σ-field. Then for (Ai) ↑, (Ai)i∈N trivially
⋃

i∈N Ai ∈ F holds.

Now suppose that the union of every increasing sequence of sets in F is in F too.

Suppose we have (Ai)i∈N ⊆ F . Then Bi :=
⋃

n≤i An is an increasing sequence, but

then ⋃
i∈N

Ai =
⋃
i∈N

Bi ∈ F .

(c) Suppose F is a σ-field. Then for (Ai) p.w.-disjoint trivially
⋃

i∈N Ai ∈ F holds.

Now suppose, that the union of every p.w.-disjoint sequence of sets in F is in F

too. Let (Ai)i∈N ⊆ F . Define Bi := Ai \
⋃

n<i An ∈ F (because F is a field). But

the Bi are p.w.-disjoint. Hence⋃
i∈N

Ai =
⋃
i∈N

Bi ∈ F .
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Intermediate 4 (Test Feb-05), 2.7 (Notes Feb-01) 3

Problem: Let f : (Ω,A) → (Y,B) be (A,B)-measurable, and let g :

(Y,B) → (Z, C) be (B, C)-measurable. Then g ◦ f is (A, C)-measurable.

——

we need to show that (g ◦ f)−1(C) ∈ A ∀C ∈ C.

Since f is (A,B)-measurable, g is (B, C)-measurable, we have

f−1(B) ∈ A ∀B ∈ B and g−1(C) ∈ B ∀C ∈ C

So

(g ◦ f)−1(C) = f−1(g−1(C)) ∀C ∈ C

= f−1(B) ∈ A ∀B := g−1(C) ∈ B

Intermediate 5 (Test Feb-05), 2.11 (Notes Feb-01) 3

Problem: Show that a function f : Ω → R is F -measurable iff (f ≤ α) ∈

F for every α ∈ R.

——

(f ≤ α) = f−1[(−∞, α]]

proof of ⇒ clear by definition of measurability, since (−∞, α] ∈ B(R) ∀α ∈ R

proof of ⇐ (f ≤ α) ∈ F ∀α ∈ R, i.e. f−1[(−∞, α]] ∈ F ∀α ∈ R

Now take a, b ∈ R with a < b:

f−1[(−∞, a]] ∈ F , f−1[(−∞, b]] ∈ F
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since F is a field we have:

[
f−1[(−∞, a]]

]c ∈ F and
[
f−1[(−∞, a]]

]c ∩ (f−1[(−∞, b]]
)
∈ F

⇒ f−1[(−∞, a]c] ∩
(
f−1[(−∞, b]]

)
∈ F

⇒ f−1 [(−∞, a]c ∩ (−∞, b]] ∈ F

⇒ f−1[(a, b]] ∈ F ∀a, b ∈ R; a < b

R = {finite unions of intervals (a, b], −∞ ≤ a < b ≤ ∞}

for any R ∈ R : R =
⋃n

i=1(ai, bi]

since F is a field:

n⋃
i=1

f−1 [(ai, bi]] ∈ F ⇒ f−1

[
n⋃

i=1

[(ai, bi]]

]
,

i.e. f−1(R) ∈ F ∀R ∈ R

R generates the σ-Borel-function R, i.e. σ(R) = B(R)

⇒ therefore, by Theorem 2.8 (as of 5/2), f is F -measurable!

Intermediate 6 (Test Feb-05), 3.14 (Notes Feb-01) 3

Problem: Let f ∈ L(F)+. Prove Markoff’s inequality

µ(f > a) ≤ 1

a

∫
f dµ, a > 0.

——

Prof. Strasser: OK, but the contrary of > is ≤ !

Let f ∈ (F)+. Prove Markoff’s inequality

µ (f > a) ≤ 1
a

∫
fdµ, a > 0
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Proof:

f ≥ a1{f>a}, because 1 {f>a} =

 1, when f > a

0, when f < a

⇒
∫

fdµ ≥
∫

a1 {f>a} dµ = µ (f > a)

m

1
a

∫
fdµ ≥ µ (f > a)

Intermediate 7 (Test Feb-05), 3.15 (Notes Feb-01) 3

Problem: Let f ∈ L(F)+. Show that
∫

f dµ = 0 implies µ(f 6= 0) = 0.

——

f ∈ L(F )−1 , Show
∫

fdµ = 0 ⇒ µ(f 6= 0) = 0

Let
∫

fdµ = 0. From Markov’s inequality and since f ∈ L(F )t then

0 ≤ µ(f >
1

n
) ≤ 1

1
n

∫
fdµ

(call it inequality 1)

Now consider the sets An = (f > 1
n
). We have

A1 ⊂ A2 ⊂ A3 ⊂ ...andAn ↑ A0 = (f > 0) as n →∞

Hence , we have limnAn =
⋃

n∈N An = A0

Then by σ-additivity

µ(
⋃

n An) = µ(A0)

Now as n→∞ inequality 1 becomes

0 ≤ µ(f > 0) ≤ 0

The second inequality follows since
∫

fdµ=0.

Hence µ(f > 0) = µ(f 6= 0) = 0 ⇒ f = 0(µ− a.e)
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Intermediate 8 (Test Feb-05), 3.26b (Notes Feb-01) 3

Problem: Let f be an integrable function. Then

f = 0 µ-a.e. ⇔
∫

A

f dµ = 0 for all A ∈ F

——

Let A ∈ F be arbitrary, but fixed. First consider f =
∑n

i=1 ai1Fi
∈ S+, where

ai > 0. By f = 0 µ-a.e., ie. µ(f > 0) = 0, we know that µ(Fi) = 0 and hence

µ(Fi ∩ A) = 0 for all i. But then∫
A

f dµ =

∫
1Af dµ = 0 .

Now let f ∈ L+. Take a sequence fn ↑ f where fn ∈ S+ for all n. But f = 0 µ-a.e.,

hence fn = 0 µ-a.e.. Plugging into the definition of the integral and using the result

for simple functions we get

0 = lim
n→∞

∫
A

fn dµ =

∫
A

f dµ .

In the last step we consider f ∈ L. We know that f+ = 0 µ-a.e. and f− = 0 µ-a.e.,

hence ∫
A

f dµ =

∫
A

f+ dµ−
∫

A

f− dµ = 0 .

Now we prove the converse. Suppose µ(f 6= 0) > 0. Then either µ(f > 0) > 0 or

µ(f < 0) > 0 holds. We only consider the first case: We claim there exists an ε > 0

such that µ(f > ε) > 0. Suppose not, then for every ε > 0 we have µ(f > ε) = 0. But

{f > 1
n
} ↓ {f > 0} hence 0 = limn→∞ µ(f > 1

n
) = µ(f > 0) 6= 0.

Let A := {f > 0}. Then we get a contradiction:∫
A

f dµ =

∫
f>ε

f dµ +

∫
0<f<ε

f dµ ≥ ε µ({f > ε}) > 0
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Intermediate 9 (Test Feb-05), 3.32 (Notes Feb-01) 3

Problem: Show that under the assumptions of the dominated convergence

theorem we even have

lim
n

∫
|fn − f | dµ = 0

——

fn → f µ-a.e., therefore hn := |fn − f | → 0 µ-a.e.. By the construction of hn we

know

hn = |fn − f | ≤ |fn|+ |f | ≤ g + |f |

By the dominated convergence theorem for fn we know that f is integrable, hence

hn is dominated by the integrable function g + |f |. Again applying the dominated

convergence theorem, but now for hn, we get that limn hn ∈ L1(µ) and together with

exercise 3.22

lim
n

∫
hn dµ = lim

n

∫
|fn − f | dµ = 0 .

Intermediate 10 (Test Feb-05), 4.3a (Notes Feb-01) 7

Prof. Strasser: far too complicated. you don’t need the CS inequality.

simply use (f+g)ˆ2\le 2(fˆ2+gˆ2). derive this from (f+g)ˆ2\ge 0.

Problem: Show that L2 is a vector space.

——

Show that L2 = L2(Ω,F , µ) = {f ∈ F :
∫

f 2dµ < ∞} is a vector space.

We first introduce the Cauchy-Schwarz-Inequality that we will use later: We know

that 〈x, x〉 ≥ 0 for any x ∈ L2. Take x = u + λ. In addition we know that 〈λu, v〉 =

λ ∗ 〈u, v〉 ∀u, v ∈ L2, λ ∈ F then

〈u + λv, u + λv〉 = 〈u, u〉λ ∗ 〈u, v〉 + λ ∗ 〈v, u〉 + λλ ∗ 〈v, v〉 ≥ 0
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For v = 0, the inequality is trivially fulfilled ; for v 6= 0 we can set λ = − 〈v,u〉
〈v,v〉 which

leads to

〈u, u〉 − 〈v, u〉
〈v, v〉

〈u, v〉 − 〈u, v〉
〈v, v〉

< 〈v, u〉+
〈v, u〉
〈v, v〉

〈v, v〉 ≥ 0

multiplying by 〈v, v〉 > 0 yields

〈u, u〉 〈v, v〉 − 〈u, v〉 〈v, u〉 ≥ 0

Using this result we get that

〈f, g〉 〈g, f〉 ≤ 〈f, f〉 〈g, g〉

since both 〈f, f〉 and 〈g, g〉 are finite by assumption, also 〈f, g〉 〈g, f〉 = , 〈f, g〉 ,2 and

hence 〈f, g〉 has to be finite concluding that it is an element of L2.

Have 〈λf, λf〉 = λλ ∗ 〈f, f〉. Since both, λ and 〈f, f〉 are finite, the right hand side

is finite. Thus 〈λf, λg〉 < ∞ and λf ∈ L2.

Finally we show that f +g ∈ L2. This means we have to show that 〈f + g, f + g〉 <

∞. Expanding the right hand side and using the Cauchy Schwarz inequality gives

〈f + g, f + g〉 = 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉

. Here, 〈f, f〉 and 〈g, g〉 are finite by assumption and from the part before we

know that also 〈f, g〉 and 〈g, f〉 are finite. Thus we may conclude that f + g ∈

L2and L2 is indeed a vector space.

Intermediate 11 (Test Feb-05), 4.12 (Notes Feb-01) 7

Prof. Strasser: OK, but the final implication you need the measure exten-

sion theorem

Problem: Let α : R → R be an increasing function which is supposed

to be continuous on R and to not differentiable at at most finitely many

points. Show that λα = α′λ.



2 INTERMEDIATE QUESTIONS 46

——

Let λα be a right-continuous, increasing function defined on left-open, right-closed

intervals such that

λα ((a, b]) = α (b)− α (a)

As α is increasing, continuous and differentiable (Except for finetely many points), α′

is continuous almost everywhere.

α (b)− α (a) =

∫
(a,b]

α′dλ =

∫ b

a

α′(t)dt

where α′ denotes the Radon-Nikodym-derivative (as in Definition 4.8 in the notes of

2006-02-05)

α′ =
dλα

dλ

So

λα ((a, b]) =

∫
(a,b]

α′dλ = (α′λ) ((a, b])

⇒ λα = α′λ

Intermediate 13 (Test Feb-05), 4.13 (Notes Feb-01) 7

Prof. Strasser: (a) you have to show that Q � P ≡ (P (Ci) = 0 implies

Q(Ci) = 0 ) (b) OK

Problem: Let P and Q be probability measures of a finite field F . (1)

State Q � P in terms of the generating partition of F . (2) If Q � P find

dQ/dP .

——

Let P and Q be probability measures of a finite field F

State Q � P in terms of the generating partition of Ω
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Let

C = (C1, C2, ..., Cm)

be a finite partition of Ω

Then F is the σ -field generated by C

F = σ(C1, C2, ..., Cm)

Let Q|F and P |F be two probability measures defined on (Ω,F , Q) and (Ω,F , P )

If Q � P :

then P (A) = 0 ⇒ Q (A) = 0 ∀A ∈ F

So:

P (A) =
∑
Ci⊆A

P (Ci) = 0 by sigma-additivity

⇒ P (Ci) = 0 ∀ Ci ⊆ A

Since Q (A) =
∑

Ci⊆A

P (Ci) and Q (A) ≥ 0 ∀ A ∈ F :

Q (Ci) = 0 ∀ Ci ⊆ A

and therefore ∑
Ci⊆A

Q (Ci) = Q (A) = 0

If Q � P , find dQ/dP

By the Radon-Nikodym-Theorem:

If Q � P , then Q = fP for some f ∈ L+ (F)

So the Radon-Nikodym-derivative of Q with respect to P is

f :=
dQ

dP

Moreover:

Q (A) =

∫
A

f dP =

∫
1A f dP
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and:

Q (A) =
∑
Ci⊆A

Q (Ci) =
∑
Ci⊆A

Q (Ci)

P (Ci)
P (Ci) =

m∑
i=1

1Ci∩A
Q (Ci)

P (Ci)
P (Ci)

This implies:
m∑

i=1

1Ci∩A
Q (Ci)

P (Ci)
P (Ci) =

∫
1A f dP

then, as:

1Af =
m∑

i=1

Q (Ci)

P (Ci)
1Ci∩A

and since 1Ci∩A = 1A 1C :

dQ

dP
=: f =

m∑
i=1

Q (Ci)

P (Ci)
1Ci

Intermediate 14 (Test Feb-05), 4.15 (Notes Feb-01) 7

Prof. Strasser: almost OK: you proved it for B in the field R. use the

measure extension theorem to prove it for borel sets.

Problem: Let (Ω,F , P ) be a measure space and X a random variable

with differentiable distribution function F . Explain the formulas

P (X ∈ B) =

∫
B

F ′(t) dtE(g ◦X) =

∫
g(t)F ′(t) dt

——

P (X ∈ B) =

∫
B

F
′
(t)dt :

From the fundamental theorem of calculus we know that F (b) − F (a) =
∫ b

a
F
′
(t)dt.

By definition of a distribution function we know that PX((a, b]) = F (b) − F (a) =∫ b

a
F
′
(t)dt. X is a real-valued function Ω → R, and the σ-field on R is the Borel-σ-

field B(R) which is generated by the algebra R. So by Problem 1.9 (Notes 5/2), B

has to be the union of some pairwise disjoint intervals Bi := (ai, bi].
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So we have:

P (X ∈ B) =
∑

i

P (X ∈ Bi) =
∑

i

[F (bi)− F (ai)] =
∑

i

∫ bi

ai

F
′
(t)dt

=
∑

i

∫
Bi

F
′
(t)dt =

∑
i

∫
1Bi

F
′
(t)dt =

∫ ∑
i

1Bi
F
′
(t)dt

=

∫
1BF

′
(t)dt =

∫
B

F
′
(t)dt

as 1B =
∑

i 1Bi
(as the Bi are a generating partition).

and E(g ◦X) =

∫
g(t)F

′
(t)dt :

By Problem 3.7 (Notes 5/2) we know that E(g ◦ X) =
∫

g dλF . As F is dif-

ferentiable, we know by Problem 4.12 (Notes 5/2) that λF = F
′
λ. So

∫
g dλF =∫

g d(F
′
λ) =

∫
g F

′
dλ =

∫∞
−∞ g(t)F

′
(t)dt.

Intermediate 15 (Test Feb-05), 6.8 (Notes Feb-01) 3

Problem: Prove the law of interated conditioning.

——

Correct proof by Prof. Strasser:

1. Assume that A ⊆ B. Then E(X|A) is B-measurable. Therefore we have

E(E(X|A)|B) = E(X|A)

2. Assume conversely that B ⊆ A. In order to show that

E(E(X|A)|B) = E(X|B)

we have to show that∫
B

E(X|B) dP =

∫
B

E(X|A) dP for all B ∈ B

But this is true since in view of B ⊆ A both sides are equal to
∫

B
X dP .
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Intermediate 16 (Test Feb-05), 6.10 (Notes Feb-01) 3

Problem: Prove the law of redundant conditioning.

——

Let X,Y be square integrable, X A-measurable.

show that E(xy|A)=x E(y|A)

X,Y square-integrable ⇒ X integrable, Y integrable ⇒ XY integrable

1) Suppose that both X and Y are positive and let A ∈ A

Suppose that X is a simple function 1B = X for some B ∈ A

⇒
∫

A

XE (Y |A) dP =

∫
A∩B

E (Y |A) =

∫
A∩B

Y dP =

∫
A

XY dP

⇒ in this case we have

E (XY |A) = xE (Y |A)

Now we will use measure-theoretic induction:

X,Y are non-negative and X A measurable.

Let {Xn} be an increasing sequence of simple A-measurable functions with limit X.

Then Xn is simple.

⇒
∫

A

XnE (Y |A) dP =

∫
A

XnY dP (∗)

Let n →∞, since X ≥ 0, E (x|A) ≥ 0 (xn) ⊆ S(F )+Xn ↑

we can apply the Beppo-Levi Theorem to (*) and obtain:∫
A

XE (y|A) dP =

∫
A

XY dP (∗∗)

Now in the general case (when X, Y can also be negative), write X+=max{X, 0}

and X− = X+ −X = max{−X, 0}
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Then both X+ and X− are positive and both are A-measurable. In a similar way we

can define the positive and negative part of Y.

If x is square integrable ⇒ X+, X− are integrable. Moreover

XY = X+X+ + X−Y − −X+Y − −X−Y +

But (**) holds for all four products ⇒ it holds for XY .

Intermediate 17 (Test Feb-05), 7.12 (Notes Feb-01) 3

Problem: Let (Fk) be a filtration and let τ : Ω → N0∪{∞} be a random

variable. Show that the following assertions are equivalent:

(a) (τ = k) ∈ Fk for every k ∈ N

(b) (τ ≤ k) ∈ Fk for every k ∈ N

(c) (τ < k) ∈ Fk−1 for every k ∈ N

(d) (τ ≥ k) ∈ Fk−1 for every k ∈ N

(e) (τ > k) ∈ Fk for every k ∈ N

——

Let (Fk)k≥0 be a filtration and τ : Ω → N0

⋃
{∞} be a random variable.

(a) ⇒ (b):

Since (τ=k) ∈ Fk ∀k ∈ N ⇒ (τ = k − 1) ∈ Fk−1.

Now we can write (τ ≤ k) =
⋃k

i=o(τ = i) where (τ = i) ∈ Fi ∀i = 0,...,k .

Since (Fk) is a filtration, Fj−1 ⊆ Fj∀j ∈ N0)⇒ (τ = i) ∈ Fi ⊆ Fk i=0,1,...,k. Since

F is a field, it must contain the union of a finite number of its elements. Therefore,

(τ ≤ k) ∈ Fk ∀ k ∈ N .

(b) ⇒(c):

Since (τ ≤ k) ∈ Fk∀k ∈ N ⇒ (τ < k) = (τ < k − 1) ∈ Fk−1∀k ∈ N .
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(c) ⇒(d):

Fk−1 is a σ-field. Therefore we can conclude (τ < k) ∈ Fk−1 ⇒ (τ ≥ k) = (τ <

k)c ∈ Fk−1.

(d) ⇒(e):

Since (τ ≥ k) ∈ Fk−1∀k ∈ N ⇒ (τ > k) = (τ ≥ k + 1) ∈ Fk∀k ∈ N

(e) ⇒(a):

We have (τ > k) ∈ Fk∀k ∈ N .

Now write (τ = k) = (τ ≤ k)
⋂

(τ ≥ k) = (τ > k)c
⋂

(τ > k−1), where (τ > k)c ∈ Fk,

and (τ > k − 1) ∈ Fk−1.

Since (Fk) is a filtration, Fk−1 ⊆ Fk, and therefore (τ > k − 1) ∈ Fk.

Intermediate 18 (Test Feb-05), 7.36 (Notes Feb-01) 3

Problem: Let Sn = X1 + X2 + · · · + Xn where (Xi) are independent

identically distributed (i.i.d.) and square integrable random variables with

E(Xi) = 0 and V (Xi) = σ2. Show that Mn := S2
n − σ2n is a martingale.

——

By Theorem 7.33 (Notes 5/2), Mn being a martingale is equivalent to

E (Mn|Fn−1) = Mn−1, where Fn−1 is the σ-field representing the history of (Sn).
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E (Mn|Fn−1) = E
(
S2

n − σ2n|Fn−1

)
= E

(
S2

n|Fn−1

)
− E

(
σ2n|Fn−1

)
= E

(
S2

n − S2
n−1 + S2

n−1|Fn−1

)
− σ2n

= E
(
S2

n − S2
n−1|Fn−1

)
− σ2 +

[
E
(
S2

n−1|Fn−1

)
− (n− 1) σ2

]
= E

(
X2

n + 2Sn−1Xn|Fn−1

)
− σ2 + Mn−1

= E
(
X2

n|Fn−1

)
− σ2 + 2E (Sn−1Xn|Fn−1) + Mn−1

= E
(
X2

n

)
− σ2 + 2E (Xn) Sn−1 + Mn−1

= Mn−1

Using the hint from the script (S2
n − S2

n−1 = X2
n + 2Sn−1Xn). Knowing that Sn−1 is

Fn−1-measurable and that Xn is independent of Fn−1 (as the Xn are independent) we

were able to use the Law of redundant conditioning.

Intermediate 19 (Test Feb-05), 8.5 (Notes Feb-01) 3

Problem: Show that Wt/t
P→ 0 as t →∞.

——

Show that : Wt

t
→P 0 as t →∞

Proof: we need to show that P (|wt

t
| > ε) → 0,∀ε > 0, ast →∞

Apply Chebeysev p(|wt

t
| > ε) ≤ 1

ε2

∫ w2
t

t2
dP (1)

Since Wt ∼ N (0, t) we must have E(Wt) = 0, V ar(Wt) = t

Consequently E(Wt

t
) = 0, var(Wt

t
) = E(

W 2
t

t2
)− (E(Wt

t
))2 = 1

t2
t = 1

t
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Hence E(
W 2

t

t2
) = 1

t
, i.e

∫ W 2
t

t2
dP = 1

t

Pluggin
∫ W 2

t

t2
dP = 1

t
into (1), we have P (|Wt

t
| > ε) ≤ 1

ε2
1
t
→ 0 , as t →∞ ∀ε > 0

Intermediate 20 (Test Feb-05), 8.12 (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process. For every t > 0 and every

Riemannian sequence of subdivisions 0 = tn0 < tn1 < . . . < tnn = t

n∑
i=1

|W (tni )−W (tni−1)|2
P→ t, t > 0.

——

We define Qn :=
∑n

i=1(Wti − Wti−1
)2. (Wt) is a Wiener process, hence we know

that E
[
(Wti −Wti−1

)2
]

= Var[Wti −Wti−1
] = ti − ti−1 and therefore

E[Qn] =
n∑

i=1

E
[
(Wti −Wti−1

)2
]

=
n∑

i=1

ti − ti−1 = t .

Now we compute Var(Qn). If X is normally distributed E[X4] = 3(Var[X])2. Thus we

get:

Var(Qn) =
n∑

i=1

Var((Wti −Wti−1
)2) ≤

n∑
i=1

3(ti − ti−1)
2

≤ max
i

(ti − ti−1)
n∑

i=1

3(ti − ti−1) = 3t max
i

(ti − ti−1) → 0

Now we consider Chebyshev’s inequality, which yields:

P (|Qn − 1| > ε) ≤ 1

ε2
Var[Qn] → 0
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Intermediate 21 (Test Feb-05), 8.27 (Notes Feb-01) 3

Problem: Let (Xt)t≥0 be an integrable process adapted to a filtration

(Ft)t≥0. Show that (a) implies (b):

(a) E(Xσ) = E(X0) for all bounded stopping times σ.

(b) (Xt)t≥0 is a martingale.

——

We have to show E[Xt|Fs] = Xs for all s < t < ∞, ie.
∫

F
Xt dP =

∫
F

Xs dP for all

F ∈ Fs.

Fix a arbitrary but fixed F ∈ Fs. Define τ := s 1F + t 1F C . τ is bounded by t and

is a stopping time and is a stopping time, because

(τ ≤ r) =


∅ when r < s

F when r ≥ s and r < t

Ω when r ≥ t

where ∅, Ω ∈ Fr and F ∈ Fs ⊆ Fr for r ≥ s. Therefore we know by assumption

E[Xτ ] = E[X0].

By the same argument we get τ̃ := t 1Ω is a bounded stopping time and E[Xt] =

E[Xτ̃ ] = E[X0]. Together we have

E[Xt] = E[Xτ ]

and therefore ∫
F

Xt dP +

∫
F C

Xt dP =

∫
F

Xs dP +

∫
F C

Xt dP ,

from which we get the result: ∫
F

Xt dP =

∫
F

Xs dP
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Intermediate 22 (Test Feb-05), 8.32a (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process and let τa,b be the first passage

time of the boundary f(t) = a + bt, a > 0. Take for granted that

E(e−λτa,b1(τa,b<∞)) = e−a(b+
√

b2+2λ), λ ≥ 0

Show that P (τ0,b = 0) = 1 for every b > 0.

——

The proof is provided by Prof. Strasser in the last version of the midterm test

problems file. Here are the answers to the two questions posed within his solution:

Q1) Which limit theorem for integrals can be applied?

We apply the dominated convergence theorem (theorem 3.31 (script version 2006-02-

05)).

Q2) How does the assertion follow from the identity?

Claim:

E(e−λτ0,b1(τ0,b<∞)) = 1 ⇒ P (τ0,b = 0) = 1

Proof: Note that

e−λτ0,b1(τ0,b<∞) ≤ 1(∗∗)

⇔ e−λτ0,b1(τ0,b<∞) ≤ E(e−λτ0,b1(τ0,b<∞))

(*)

Taking expectations on both sides of (*) we receive

E(e−λτ0,b1(τ0,b<∞)) ≤ E(e−λτ0,b1(τ0,b<∞))

which must hold with equality. Thus all the above inequalities must hold with equality.

But (**) can be an equality only if τ0,b = 0. QED
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Intermediate 23 (Test Feb-05), 8.37 (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process, c, d > 0 and define

σc,d = inf{t : Wt 6∈ (−c, d)}

Find the distribution of Wσc,d
.

——

Proof by Prof. Strasser: We may assume (knowing from a previous problem) that

σc,d is a stopping time and σc,d < ∞ P -a.s.

Applying the optimal stopping theorem to the truncated stopping times σc,d ∩ n we

obtain that

E
(
Wσc,d∩n

)
= 0

The random variables Wσc,d∩n have values in the interval [−c, d] and thus are uniformly

bounded, hence dominated. With n →∞ we may apply Lebesgues theorem to obtain

E
(
Wσc,d

)
= 0

which means

−cP
(
Wσc,d

= −c
)

+ dP
(
Wσc,d

= d
)

= 0

Since P
(
Wσc,d

= −c
)

+ P
(
Wσc,d

= d
)

= 1, the distribution can be found easily:

P
(
Wσc,d

= −c
)

+ P
(
Wσc,d

= d
)

= 1

P
(
Wσc,d

= d
)

= 1− P
(
Wσc,d

= −c
)

Substituting, we obtain

−cP
(
Wσc,d

= −c
)

+ d
(
1− P

(
Wσc,d

= −c
))

= 0

(c + d) P
(
Wσc,d

= −c
)

= d

P
(
Wσc,d

= −c
)

=
d

c + d
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similarly:

P
(
Wσc,d

= d
)

=
c

c + d

Intermediate 24 (Test Feb-05), 8.38 (Notes Feb-01) 3

Problem: Let (Wt)t≥0 be a Wiener process, c, d > 0 and define

σc,d = inf{t : Wt 6∈ (−c, d)}

Find E(σc,d).

——

Let (Wt)t≥0 be a Wiener process, c, d > 0 and define

σc,d = inf{t : Wt 6∈ (−c, d)}

Find E(σc,d).

Proof:

We may assume that σc,d is a stopping time and that σc,d < ∞ P-a.s. Applying

the optimal stopping theorem to the truncated stopping times σc,d ∩ n we obtain that

E(W 2
σc,d∩n

) = E(σc,d∩n)

The random variables Wσc,d∩n
have values in the interval [−c, d] and thus are uniformly

bounded and hence dominated. With n → ∞ we may apply Lebesgue’s Theorem on

the left hand side and Beppo Levi’s Theorem on the right hand side to obtain:

E(W 2
σc,d

) = E(σc,d)

This gives E(σc,d) = c2P (Wσc,d
= −c) + d2P (Wσc,d

= d) From the definition of the

Wiener Process we know that E(Wσc,d
) = 0 which means that cP (Wσc,d

= −c) +

dP (Wσc,d
= d) = 0 Since P (Wσc,d

= −c) + P (Wσc,d
= d) = 1, we obtain
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1. P (Wσc,d
= −c) = d

c+d

2. P (Wσc,d
= d) = c

c+d

Substitute (1) and (2) into E(σc,d) = c2P (Wσc,d
= −c) + d2P (Wσc,d

= d), which

gives us finally

E(σc,d) =
cd2

c + d
+

cd2

c + d
= cd
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3 Advanced Questions

Advanced 1 (Test Feb-05), 1.10 (Notes Feb-01) 3

Problem: (a) Show that any content λα defined by

λα((a, b]) := α(b)− α(a) (5)

necessarily satisfies

A =
n⋃

i=1

Ii, where (Ii) are pw. dj. intervals ⇒ λα(A) =
n∑

i=1

λα(Ii) (6)

(b) Show that using (6) as a definition is unambiguous.

(c) Show that (6) defines a content on R which is finite on bounded sets.

——

(a) If λα is a content, then it is additive, ie. for A =
⋃n

i=1(Ii), where Ii p.w. disjoint

intervals, we get λα(A) =
∑n

i=1 λα(Ii).

(b) Note R is a field. Let G := {(a, b] : a, b ∈ R, a < b}. Let A ∈ R and A =⋃m
i=1 Ai =

⋃n
j=1 Bj where Ai are p.w. disjoint intervals and Bi too. We want to

show that
∑n

i=1 λα(Ai) =
∑n

j=1 λα(Bj).

• First we consider the case m = 1, ie. (a, b] =
⋃n

j=1(aj, bj]. W.l.o.g. a = a1 ≤

b1 = a2 ≤ b2 = · · · ≤ bn−1 = an ≤ bn = b. But then we have

n∑
j=1

λα((aj, bj]) =
n∑

j=1

α(bj)− α(aj) = α(b)− α(a) .

• Now we have the general case m ≥ 1. The Bj are disjoint, hence Ai =⋃n
j=1 Ai ∩ Bj and analogously Bj =

⋃m
i=1 Ai ∩ Bj. Since Ai ∩ Bj ∈ G we get

by using part 1):

m∑
i=1

λα(Ai) =
m∑

i=1

n∑
j=1

λα(Ai ∩Bj) =
n∑

j=1

m∑
i=1

λα(Ai ∩Bj) =
n∑

j=1

λα(Bj)
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(c) Assume A ∈ R bounded, ie. A ⊆ (−a, a] for some a ∈ R, but then

λα(A) ≤ λα((−a, a]) = 2a

Advanced 2 (Test Feb-05), 1.28 (Notes Feb-01) 3

Problem: (a) The system 2Ω (system of all subsets of Ω is a σ-field. (b)

The intersection of any family of σ-fields is a σ-field. (c) Let C be any

system of subsets on Ω and denote by σ(C) the intersection of all σ-fields

containing C:

σ(C) =
⋂
C⊆F

F

Then σ(C) is the smallest σ-field containing C:

C ⊆ F , F is a σ-field ⇒ C ⊆ σ(C) ⊆ F

——

(a) 1) Ω ⊆ Ω

2) A1, A2 ⊆ Ω then A1 ∪ A2 ⊆ Ω

3) A ⊆ Ω then AC = Ω \ A ⊆ Ω

4) (Ai)i∈N, Ai ⊆ Ω then
⋃

i∈N Ai ⊆ Ω

(b) (Aα)α∈A, Aα is a σ-field on Ω for all α ∈ A. Define A :=
⋂

α∈AAα. We show A is

a σ-field.

1) Ω ∈ Aα for all α ∈ A, hence Ω ∈
⋂

α∈AAα = A.

2) A1, A2 ∈ A, ie. A1 ∪ A2 ∈ Aα for all α ∈ A, because Aα is a σ-field. Hence

A1 ∪ A2 ∈
⋂

α∈AAα = A.

3) A ∈ A, ie. AC ∈ Aα for all α ∈ A, because Aα is a σ-field. Hence AC ∈⋂
α∈AAα = A.
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4) Consider (Ai)i∈N, Ai ∈ A for all i ∈ N, ie. Ai ∈ Aα for all i ∈ N and
⋃

i∈N Ai ∈

Aα for all α ∈ A, because Aα is a σ-field. Hence
⋃

i∈N Ai ∈
⋂

α∈AAα = A.

(c) By (b) we know that σ(C) is a σ-field. It is the smallest one by definition: Let F̃

be a σ-field containing C, then

σ(C) =
⋂
C⊆F

F = F̃ ∩

 ⋂
C⊆F6=F̃

F

 ⊆ F̃ .

Advanced 3 (Test Feb-05), 1.40a (Notes Feb-01) 3

Problem: Assume that µ(Ω) < ∞. Show that for every M ∈ M and

every (arbitrarily small) ε > 0 there is a set A ∈ A such that µ(M \A) < ε

and µ(A \M) < ε.

——

First consider the case that µ is a finite measure on Ω. Let ε > 0 and M ∈ M

be arbitrary but fixed. By looking at the definition of µ∗ we know there exist Ai ⊆

A, M ⊆
⋃

i∈N Ai such that ∑
i∈N

µ(Ai)− µ(M) < ε .

Now define Bn :=
⋃n

i=1 Ai and B :=
⋃

i∈N Ai. By definition Bn ↑ B and B \ Bn ↓ ∅

respectively, therefore by Lemma 1.6 µ(B \ Bn) ↓ 0, ie. there exists an N ∈ N such

that µ(B \ BN) < ε. Define A := BN ∈ A. We have constructed the sets B and A so

that the following is true: (M \ A) ⊆ (B \ A) and (A \M) ⊆ (B \M). Thus we get

µ(M \ A) ≤ µ(B \ A) < ε

and

µ(A \M) ≤ µ(B \M) ≤
∑
i∈N

µ(Ai)− µ(M) < ε .
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Now we allow for µ being σ-finite, ie. w.l.o.g. there exists a sequence Ωi ∈ σ(A),

pairwise disjoint, such that Ω =
⋃

i∈N Ωi and µ(Ωi) < ∞ for all i ∈ N (if the original

sequence Ωi was not disjoint, consider Ω̃1 := Ω1 and Ω̃i := Ωi \
(⋃i−1

j=1 Ω̃j

)
). Let ε > 0

and M ∈ M be arbitrary but fixed. Define Mi := M ∩ Ωi for all i ∈ N. By the

first part we know that there exist sets Ci ⊆ Ωi such that µ(Mi \ Ci) < 2−i ε and

µ(Ci \Mi) < 2−i ε. By construction the sets Mi are pairwise disjoint. This is also true

for the Ci. Hence we get for A :=
⋃

i∈N Ci (remember M =
⋃

i∈N Mi)

µ(M \ A) = µ(
⋃
i∈N

Mi \
⋃
i∈N

Ci) = µ(
⋃
i∈N

(Mi \ Ci))

=
∑
i∈N

µ(Mi \ Ci) <
∑
i∈N

2−i ε = ε

and

µ(A \M) = µ(
⋃
i∈N

Ci \
⋃
i∈N

Mi) = µ(
⋃
i∈N

(Ci \Mi))

=
∑
i∈N

µ(Ci \Mi) <
∑
i∈N

2−i ε = ε .

Advanced 4 (Test Feb-05), 1.40b (Notes Feb-01) 3

Problem: Assume that µ(Ω) < ∞. Show that for every M ∈M there is

some A ∈ σ(A) such that µ(M \ A) = 0 and µ(A \M) = 0.

——

Again, first consider the case that µ is a finite measure on Ω. We use the result

from the first part of the exercise, ie. for every m ∈ N there exists an Am ∈ A such

that µ(M \ Am) < 2−m and µ(Am \M) < 2−m. Define Bn :=
⋃∞

m=n Am ∈ σ(A) and

A :=
⋂∞

n=1 Bn ∈ σ(A). We know that

µ(M \Bn) ≤ µ(M \ An) < 2−n and

µ(Bn \M) ≤
n∑

i=1

µ(Ai \M) < 2−n

n∑
i=0

2−i = 2−n+1 .
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Hence µ(M \ Bn) → 0 and µ(Bn \ M) → 0. But we know that Bn ↓ A, hence

(M \ Bn) ↑ (M \ A) and (Bn \ M) ↓ (A \ M). By Lemma 1.6(a) and 1.6(c) we get

µ(M \ Bn) ↑ µ(M \ A) and µ(Bn \M) ↓ µ(A \M). Plugging everything together we

get

µ(M \ A) = µ(A \M) = 0 .

Now let µ be σ-finite. Take the sequence Ωi from above. Again define Mi := M∩Ωi.

By the first part we know that there exist sets Di ⊆ Ωi such that µ(Mi \ Di) =

µ(Di \ Mi) = 0. Define A :=
⋃

i∈N Di again and consider the same arguments from

exercise 1.36 (1):

µ(M \ A) = µ(
⋃
i∈N

Mi \
⋃
i∈N

Di) = µ(
⋃
i∈N

(Mi \Di)) =
∑
i∈N

µ(Mi \Di) = 0

µ(A \M) = µ(
⋃
i∈N

Di \
⋃
i∈N

Mi) = µ(
⋃
i∈N

(Di \Mi)) =
∑
i∈N

µ(Di \Mi) = 0

Advanced 5 (Test Feb-05), 2.9 (Notes Feb-01) 3

Problem: Let f : (Ω,A) → (Y,B) and let C be a generating system of B,

i.e. B = σ(C). Then f is (A,B)-measurable iff f−1(C) ∈ A for all C ∈ C.

——

f is (A,B)-measurable implies f−1(C) ∈ A for all C ∈ C is trivial to show, because

consider some C ∈ C ⊆ B = σ(C). But f is (A,B)-measurable, thus we know that

f−1(C) ∈ A.

Now we show that the converse is true too. Define D := {D ⊆ Y : f−1(D) ∈ A}.

We prove that D is a σ-field:

1. If D1, D2 ∈ D, ie. f−1(D1), f
−1(D2) ∈ A then

f−1(D1 ∪D2) = f−1(D1) ∪ f−1(D2) ∈ A .
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2. Let Y = Y1 ∪ Y2, where f−1(Y1) = Ω and f−1(Y2) = ∅. Then

f−1(Y ) = f−1(Y1 ∪ Y2) = f−1(Y1) ∪ f−1(Y2) = Ω ∪ ∅ = Ω .

Thus f−1(Y ) = Ω ∈ A and Y ∈ D.

3. Consider D ∈ D, ie. f−1(D) ∈ A. Then

f−1(DC) = f−1(Y \D) = f−1(Y ) \ f−1(D) = (f−1(D))C .

4. Suppose {Di}i∈N a sequence of pairwise disjoint sets Di ∈ D. By definition

f−1(Di) ∈ A and because A is a σ-field:

f−1(
⋃
i∈N

Di) =
⋃
i∈N

f−1(Di) ∈ A

But this is definition of
⋃

i∈N Di ∈ D.

By assumption we know that C ⊆ D. But D is a sigma-field, so it definitely contains

σ(C), ie. B = σ(C) ⊆ D. By the definition of D we now know that f is (A,B)-

measurable.

Advanced 6 (Test Feb-05), 3.12 (Notes Feb-01) 3

Problem: Prove Fatou’s lemma: For every sequence (fn) of nonnegative

measurable functions

lim inf
n

∫
fn dµ ≥

∫
lim inf

n
fn dµ

——

Define gk := infn≥k fn. Then gk is increasing (and non-negative) by definition. We

know that gk ≤ fn for all n ≥ k and therefore for all k ∈ N∫
gk dµ ≤ inf

n≥k

∫
fn dµ .
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Now we apply Beppo-Levi for the sequence gk and get∫
lim inf
n→∞

fn dµ =

∫
lim
k→∞

inf
n≥k

fn dµ =

∫
lim
k→∞

gk dµ = lim
k→∞

∫
gk dµ

≤ lim
k→∞

inf
n≥k

∫
fn dµ = lim inf

n→∞

∫
fn dµ .

Advanced 7 (Test Feb-05), 7.6 (Notes Feb-01) 3

Problem: Let (Sn) be a random walk on Z. Show that

P (sup
n

Sn ≥ b) =


1 whenever p ≥ 1/2( p

1− p

)b

whenever p < 1/2

(Take the formulas for q0(a) and qc(a) for granted.)

——

i

show qa+b(a) → P (supn Sn ≥ b) as a →∞

Ma := {∃n ∈ N : Sk > −a ∀k ≤ n− 1, Sn = b}

M := {∃n ∈ N : Sn = b} , S0 := 0

obviously Ma ↑ M as a →∞ since {Sk > −a} ↑ Ω as a →∞.

qa+b(a) = P (τa+b < τ0|a + S0 = a)

= P

(
∃n ∈ N : a +

k∑
i=1

Xi > 0 ∀ k ≤ n− 1, a +
n∑

i=1

Xi = a + b

)
= P (∃n ∈ N : Sk > −a ∀ k ≤ n− 1, Sn = b)

= P (Ma)

By Lemma 1.7 (Notes 5/2) P (Ma) ↑ P (M) as Ma ↑ M (this happens when a →∞).

P (M) = P (∃n ∈ N : Sn = b) = P (supnSn ≥ b)
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ii

Show qa+b(a) →

 1 p ≥ 1/2(
p

1−p

)b

p < 1/2

From Discussion 7.2 in the notes (5/2) we know that

qa+b(a) →


( 1−p

p )
a
−1

( 1−p
p )

a+b
−1

p 6= 1/2

a
a+b

p = 1/2

case 1: p > 1/2 1−p
p

< 1 ⇒
(

1−p
p

)a

→ 0 as a →∞

⇒ qa+b(a) =
( 1−p

p )
a
−1

( 1−p
p )

a+b
−1
→ 0−1

0−1
= 1 as a →∞

case 2: p = 1/2 qa+b(a) = a
a+b

→ 1 as a →∞

case 3: p < 1/2 1−p
p

> 1 ⇒
(

1−p
p

)−a

→ 0 as a →∞

⇒ qa+b(a) =
1−( 1−p

p )
−a

( 1−p
p )

b
−( 1−p

p )
−a → 1−0

( 1−p
p )

b =
(

p
1−p

)b

as a →∞

Combining (i) and (ii), the proof is done.

Advanced 9 (Test Feb-05), 8.10 (Notes Feb-01) 3

Problem: Show that the quadratic variation of a continuous BV-function

is zero on every compact interval.

——
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Let a = tn0 < · · · < tnn = b a Riemannian sequence of subdivisions of [a, b]. Then

0 ≤ lim
n→∞

n∑
i=1

|f(tni )− f(tni−1)|2

≤ lim
n→∞

[
max

r=1,...,n
|f(tnr )− f(tnr−1)|

n∑
i=1

|f(tni )− f(tni−1)|

]

≤ lim
n→∞

[
max

r=1,...,n
|f(tnr )− f(tnr−1)|

(
lim

m→∞

m∑
i=1

|f(tmi )− f(tmi−1)|

)]

= V b
a (f) lim

n→∞

[
max

r=1,...,n
|f(tnr )− f(tnr−1)|

]
but maxr=1,...,n |f(tnr ) − f(tnr−1)| → 0 as |tnr − tnr−1| → 0, since f is continous on a

compact interval. This shows

lim
n→∞

n∑
i=1

|f(tni )− f(tni−1)|2 → 0 .
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4 Review Questions

Review 1 (Test Feb-05), 1.19 (Notes Feb-01)

Problem: Explain the structure and generation of finite fields. How to

define contents on finite fields ?

——

A finite field consists of finitely many subsets. Let C = (C1, C2, ..., Cm) be the vector

of finitely many subsets with the following properties:

1. The subsets are pairwise disjoint.

2. The subsets are exhaustive: C1 ∪ C2 ∪ ... ∪ Cm = Ω

We say that C is a finite partition of Ω. The partition C generates the field R ⊆ Ω

when the following equation holds

R :=

{⋃
i∈α

Ci : α ⊆ (1, ...,m)

}
.

Then R is the smallest field containing C. Every finite field is generated by a partition.

A content on R is defined in the following way: for any number ai ≥ 0, µ(C) :=
∑

Ci⊆C

ai

defines a content on R.

Review 2 (Test Feb-05), 1.36 (Notes Feb-01)

Problem: What is a field and what is a σ-field ? What is the difference

between a content and a measure.

——

What is a field and what is a σ-field?
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A field on a set Ω 6= ∅ is a system A of subsets A ⊆ Ω which satisfies the following

conditions:

1. Ω ∈ A, ∅ ∈ A

2. A1, A2 ∈ A ⇒ A1 ∪ A2 ∈ A and A1 ∩ A2 ∈ A

3. A ∈ A ⇒ AC ∈ A.

A is a σ-field if in addition to (1)-(3):

4. For every sequence (Ai)i∈N ∈ A ⇒
∞⋃
i=1

Ai ∈ A and
∞⋂
i=1

Ai ∈ A

What is the difference between a content and a measure?

A content is a set function µ defined on a field A such that

1. µ(A) ∈ [0,∞] whenever A ∈ A

2. µ(∅) = 0

3. Finite additivity: µ(A1∪A2) = µ(A1)+µ(A2) whenever A1, A2 ∈ A and A1∩A2 =

∅, more formally whenever µ

(
n⋃

i=1

Ai

)
=

n∑
i=1

µ(Ai) ∀ finite pairwise disjoint sets

A1...An ∈ A

If we choose instead of (3) property (4), we get the definition of a measure:

4. σ-additivity: µ

(
∞⋃

n=1

An

)
=

∞∑
n=1

µ(An) ∀ finite pairwise disjoint sets A1...An ∈ A

⇒A measure is a σ-additive content defined on a σ-field.

Review 3 (Test Feb-05), 1.37 (Notes Feb-01)

Problem: Explain the ideas of generating a σ-field by a system of sets.

Explain how the measurable spaces (N, 2N), (R,B(R)), (Rd,B(Rd)) are gen-

erated.
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——

Note that a σ-field is but a system of sets (a set of sets) that satisfies the three

characteristic properties (see review question 2). An arbitrary set of sets, let’s denote

it by C, may not display all (or any) of these properties. However, if it contained

some more sets, it would. The idea, therefore, is ”to augment” that set (of sets) C

with further sets, so that it does become a σ-field. Note that there is not one unique

such larger set of sets containing C (larger meaning with higher cardinality), since one

can possibly add more sets than minimally necessary. [Say, {∅} is no σ-field (because

it does not contain omega which must not be the empty set), but both {∅, Ω} and

{∅, A,Ac, Ω} contain the empty set and are, for every A ∈ Ω and any Ω.] In this spirit

we define σ(C), the σ-field generated by C, such that it fulfills

a) C ⊆ σ(C)

b) ∀ σ-fields S where C ⊆ S : σ(C) ⊆ S

so that we obtain the minimal sigma-field containing the set C, which is called the

generator of the σ-field.

Note that the following is always true:

o) σ(C)=
⋂

Si∈Σ Si where Σ is the set of all σ-fields containing C

o) for any σ-field S: C ⊆ S ⇒ C ⊆ σ(C) ⊆ S

Generating (N,2N) :

The set of all singleton sets containing each natural number is, for obvious reasons

(e.g., it does not contain complements), no σ-field on the natural numbers. However,

in view of what has been established, it generates one. The generated σ-field is the

power set, which is generally true for one-point sets on countable omegas. The reason

is twofold and straightforward:

(i) The power set is a σ-field.
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(ii) Any set in the power set must be in the σ-field generated, since countable unions

have to be, and we can count over all elements in the generating set, while including

or excluding (including the empty set) every such element.

Generating (R,B(R)) :

Whereas in the former case the set of all singleton sets with every element was

already enough to generate the power set, in the reals this approach does not yield a

σ-field that is rich enough to support practical purposes. The reason is that the above

method of generating a σ-field results in this case in a field that contains only sets that

are either countable or have countable complements. (A look back to the definition of

σ-fields and the minimum-property of generated σ-fields conveys conviction why this

must be.) As a consequence, the unit interval does not lie in this σ-field! (It contains

uncountably many points, and so does the complement.) For this reason, we strive for

a larger σ-field. Using the algebra R, containing all finite unions of intervals (we used

left-open right-closed ones) on R ∪ {−∞, +∞}, as a generator, we obtain the Borel

σ-field. All sets therein are by definition Borel sets. (Note that there are subsets of

the reals that are not Borel sets. An example would be the middle thirds Cantor set.)

Generating (Rd,B(Rd)) :

This is completely analogous to the previous case, just that we do not use the

algebra of finite unions of intervals as a generator, but the algebra of finite unions of

(left-open, right-closed) parallelotops.
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Review 4 (Test Feb-05), 1.44 (Notes Feb-01)

Problem: State the measure extension theorem. Show how to apply this

theorem for defining Borel measures on R.

——

The Measure Extension Theorem:

”Every finite σ-additive content µ|A defined on a field has a uniquely determined

measure extension to F = σ(A)”

We use this theorem primarily in the following way: Defining a measure for Borel

sets directly would constitute a considerable difficulty. However, by construction we

know that the Borel σ-field is generated by the field R of finite unions of intervals (see

problem 1.8 script version 5th of Feb p. 4 why R is a field, and review question 3 on

how to generate a σ-field from a field or an arbitrary set of sets). For such intervals

it is easy to specify an intuitive content: The length of an interval is its content, and

since any finite union of intervals can unambiguously be decomposed into the union of

finitely many pairwise disjoint intervals, also the respective content can be defined in

a straightforward way as the sum of the involved intervals’ contents (and would hence

be uniquely determined). By the measure extension theorem this σ-additive content

on R (which is not a σ-field) can be extended to a measure on σ(R). This is the Borel

measure.

NOTE: This works again completely analogously in Rd , with the only difference

that we define the content of a figure in Rd to be the product of its lengths in every

dimension.
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Review 5 (Test Feb-05), 2.10 (Notes Feb-01)

Problem: Explain the abstract concept of a measurable function. State

the basic abstract properties of measurable functions.

——

Let(Ω,A, µ) be a measure space. Let (Y,B) be a measurable space and the function

f : Ω 7→ Y

Definition: A function f : (Ω,A, µ) 7→ (Y,B) is called (A,B)-measurable if

f−1(B) ∈ A ∀ B ∈ B.

If f : (Ω,A, µ) 7→ (Y,B)is(A,B)-measurable, then we may define:

µf (B) := µ(f ∈ B) = µ(f−1(B))

with B ∈ B This is the image of µ under f or the distribution of f under µ.

Intuitive Backround using random variables:

A random variable is a measurable real-valued function on Ω. The arbitrary r.v.

X is a function from a probability space (Ω,A, P ) to <. We are usually interested in

probabilities P (X ∈ B) which is the distribution

PX(B) = P (X ∈ B) ∀B ∈ B

For defining the distribution function it is important that P (X ∈ B) makes sense.

This is true iff the inverse image (X ∈ B) = X−1(B) is in A. Therefore, X : Ω 7→ <

cannot be a arbitrary function but must satisfy the measurability property:

(X ∈ B) ∈ A ∀B ∈ B

Basis Abstract Properties:

Measurability property: (X ∈ B) ∈ A ∀B ∈ B.

Let f : (Ω,A) 7→ (Y,B) be (A,B) -measurable, let g : (Y,B) 7→ (Z, C) be (B, C)

-measurable, then f ◦ g is (A, C)-measurable.
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Let f : (Ω,A) 7→ (Y,B) and let C be a generating system of B i.e. (B = σ(C)).

Then f is (A,B)-measurable iff f−1(C) ∈ A ∀C ∈ C

Review 6 (Test Feb-05), 2.20 (Notes Feb-01)

Problem: Describe the structure of the set of real-valued measurable

functions. Explain the role of simple functions.

——

Let (Ω,F) be a measurable space and let L(F ) be the set of all F -measurable

functions.

Criterions for checking measurability of real-valued functions (structure):

• f : Ω 7→ < is F -measurable iff (f ≤ α) ∈ F for every α ∈ <

• Let (f1, f2, . . . , fn) be measurable functions, then f = (f1, f2, . . . , fn) : Ω 7→

<n is (F ,Bn) -measurable.

• Let(f1, f2, . . . , fn)be measurable functions. Then for every continuous function Φ :

<n 7→ < The composition Φ(f1, f2, . . . , fn)is measurable.

• Let(f1, f2, . . . , fn) be measurable functions. Then f1 + f2, f1 ∗ f2, f1 ∩ f2, f1 ∪

f2 are measurable functions.

L(F ) is a space of functions where we can perform any algebraic operation without

leaving the space ⇒ can even do it when involving a countable set of measurable

functions: Let (fn)n∈ℵ be a sequence of measurable functions. Then supn fn and

infn fn are measurable functions. Let A := (∃ limn fn). Then A ∈ F and limn fn ∗1A is

measurable. Which means that any function that can be written as an expression of

countable many operations with countable many measurable functions is measurable.

How do typical measurable functions look like? Role of simple functions?
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• Every measurable function f is the limit of some sequence of simple measurable

functions!

• If f is bounded then the approximating sequence can be chosen to be uniformly

convergent

• If ≤ then the approximating sequence can be chosen to be increasing: Let f ≤

and define:

fn :=

 k−1
2n if k−1

2n ≤ f < k
2n n

n if f ≥ n

Review 7 (Test Feb-05), 2.27 (Notes Feb-01)

Problem: Explain how the measure extension theorem is applied to con-

struct probability spaces and random variables with given distributions.

——

Let (Ωt, Ft, Pt) , t∈ T be probability spaces.

That is: Pt(Ωt) = 1 ∀t

Pt(φ) = 0 ∀t

Let lt be the class of all measurable cylinders of the form:∏
t∈TN

At×
∏

t∈T−TN
Ωt in the T-dimensional product measurable space (

∏
Ωt ,

∏
Ft).

The Class βT of all finite sums of these cylinders is a field and the minimal σ-field FT

over βT is the product σ-field
∏

Ft by definition. The product probability PT =
∏

Pt

on lt is defined by assigning the product of probabilities of its sides to every interval

cylinder that is:

PT (
∏
t∈TN

At ×
∏

t∈T−TN

Ωt) =
∏
t∈TN

Pt(At).
∏

t∈T−TN

Pt(Ωt) =
∏
t∈TN

Pt(At)



4 REVIEW QUESTIONS 77

Then Pt(ΩT ) = 1 and PT on lT is finitely additive and determines its extension to a

finitely additive set function PT on βT

Review 8 (Test Feb-05), 3.30 (Notes Feb-01)

Problem: Describe the process of constructing the integral, beginning

with indicators and ending with integrable functions.

——

• Let f = 1F be an F -measurable indicator function. We define the µ-integral of

f as follows:
∫

f dµ := µ(F ).

• Let f =
∑n

i=1 ai1Fi
be a nonnegative simple F -measurable function (f ∈ S(F))

with its canonical representation. Then
∫

f dµ :=
∑n

i=1 ai µ(Fi).

• Let f be a nonnegative measurable function (f ∈ L+(F)) and fn ↑ f , where

fn ∈ S+(F). The µ-integral is defined as
∫

f dµ := limn

∫
fn dµ.

• Let f ∈ L1(µ), i.e.
∫

f+ dµ < ∞ and
∫

f− dµ < ∞. Then we define
∫

f dµ :=∫
f+ dµ−

∫
f− dµ, where f+, f− ∈ L+(F).

Review 10 (Test Feb-05), 6.12 (Notes Feb-01)

Problem: Explain the notion and the definition of conditional expecta-

tions. State three properties which you consider as most important for this

concept.

——

Let (Ω,F,P) be a probability space and let A ⊆ F be a sub σ-field. If a random

var x is A measurable, then the information in A tells us ∀ about x.
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However if x is not A measurable then we may be interested in finding the best A

measurable approximation of x. This leads to the concept of conditional expectation.

Consider x=y+R where y is A measurable and R is uncorrelated with A.

If we require E(y)=E(x) ⇒ E(R)=0 ⇒
∫

A
RdP=0 ∀A ∈ A

∫
A

xdP=
∫

ydP for all A∈ A

For this integrals to be defined we need nonnegative and integrable random variables

Definition: Let (Ω,F , D)be a probability space and let A ⊆ F be a sub σ -field. Let

x be a nonnegative or integrable random var. Then conditional expectation E(x|A)

of x is nonnegative (resp integrable) A measurable random variable y satisfying:

∫
A

xdP=
∫

A
ydP forall A ∈ A and y = E(x|A)

Basic properties

If x is an integrable random variable then:

1. E(E(x|A)=E(x)

2. if x is A measurable then E(x|A)=x

3. If x is independent of E(x|A) then E(x|A)=E(x)
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4. Linearity: if x and y are nonnegative random variables then E(αx + βy|A) =

αE(x|A) + βE(y|A)

Review 11 (Test Feb-05), 7.4 (Notes Feb-01)

Problem: Explain the ruin problem and derive intuitively the difference

equations for ruin probabilities.

——

Ruin Problem: A person decides to try to increase the amount of money in his/her

pocket by participating in some gambling. Initially, the gambler in question has a

certain amount of money, say a. The gambler decides that he/she will gamble until a

certain goal, c, is achieved or there is no money left. If the gambler achieves the goal

of c he/she will stop playing. If the gambler ends up with no money he/she is ruined

(thus the name of the problem). So, the gambler starts playing a game of chance (e.g.,

poker, roulette, slot machines, etc.). The question is: What chance does the gambler

have of achieving the goal?

Analytically this problem can be written as:

Xi

 +1 with probability p

−1 with probability (1-p)

Let’s denote the sum of the random variables + ”a” (the initial capital) as V0 , so we

get:

V0 = a + X1 + X2 + X3 + . . . + Xn

with the X ′
is as independent random variables. This sequence of r.v. (Vn)n≥0 is called

a random walk. The question is when the random walk hits the boundary ”a+c”?

Let’s define Tx = min(n : Vn = x) If T0 ¡ Tc then the gambler has lost all his wealth

before hitting the boundary and faces the ruin situation. Hence the probabilities of
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ruin and winning will be:

q0(a) = p(T0 < Tc|V0 = a)

qc(a) = p(Tc < T0|V0 = a)

with q0 and qc depending on a sequence of random variables. So we can write

p(Tc < T0|V0 = a) = p ∗ (Tc < T0|V1 = a + 1) + (1− p) ∗ (Tc < T0|V1 = a− 1)

Or equivalently

qc(a) = qc(a + 1) + qc(a− 1)for0 < a < cand qc(0) = 0, qc(c) = 1

The difference equation comes from the fact that the random walk hast the same ruin

probability no matter at which point in time we start from. It was obtained by splitting

up events which can be done more generally whenever

P (A|B) = P (A|C1) ∗ P (C1|B) + P (A|C2) ∗ P (C2|B) if B = C1 ∪ C2

In our case a = (a + 1) ∪ (a− 1)

Review 12 (Test Feb-05), 7.22 (Notes Feb-01)

Problem: Explain the notions of filtration and stopping time for stochas-

tic sequences. Show the importance of Wald’s equation by a typical appli-

cation.

——

The pre-requisite for a (financial) stochastic sequence to be realised are investors

who are willing to engage in a certain gamble. Comparisons between different gambles

and decisions for or against gambles are based upon the information available on

the gambles at the time of evaluation. In the language of stochastic sequences, this

information is called the past of a sequence (Xi), i.e. the σ-field Fk := σ(X1, X2, ...Xk)
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generated by the events (X1 ∈ B1, X2 ∈ B2, ...Xk ∈ Bk) (see Def. 7.7. (notes 2006-02-

01)).

If the past of a certain stochastic sequence is as such that the investor can subjectively

or objectively deduct from it a pontential for a future development, which is in line

with his investment strategy, he will eventually engage in the respective gamble, at

the point in time following the evaluation at time k. In this case, (σ = k) ∈ Fk.

Certainly, if the starting time (σ = k) ∈ Fk, this implies that the stopping time

(τ = k) /∈ Fk, as otherwise it would not be sensible to engage in the gamble. Then

it must be the case that (τ = m) ∈ Fm for some m > k. The formal notion of a

stopping time is provided by Definition 8.24 (notes 2006-02-01): ”A random variable

τ : Ω → [0,∞] is called a stopping time if (τ ≤ t) ∈ Ft∀t ≥ 0”. This means that the

information sets entailed in the sequence of σ-fields (Fk)k≥0 are increasing, i.e. the

sequence is called a filtration in the terminology of stochastic sequences (see Def. 7.9.

(notes 2006-02-01)). If this were not the case, or at least if the investor could not

expect it from the evaluation of the past, this would stand at odds with the realisation

of any investment plan, so that the gamble would never be started. Therefore, it can

be expected that (τ = m) ∈ Fm for some k < m < ∞, i.e. that the stopping time is

bounded.

For any decision upon an investment plan (i.e. the engagement in a gamble), one of the

core indicators is of course exactly the concrete value of this expectation, E(τ). For

its calculation, one can use the past of a sequence to derive the expected accumulated

gain at the stopping time, E(Sτ ), and the expected gain for each Xi, and then apply

Wald’s equation (see Theorem 7.16 (notes 2006-02-01)):

E(Sτ ) = µE(τ)

where µ = E(Xk), and therefore

E(τ) =
E(Sτ )

µ

(See also problem E26 for such an application!)
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Review 13 (Test Feb-05), 7.30 (Notes Feb-01)

Problem: Explain how gambling systems lead in a natural way to the

notion of a martingale.

——

Just look at Theorem 7.26 (Optional stopping for gambling systems, Notes 5/2).

By additivity of expectation we have E(Vτ−Vσ) = E(Vτ )−E(Vσ). Now use Yn instead

of Vn. Then in case of µ = 0 we have a martingale, in case of µ ≤ 0 a supermartingale

and a submartingale if µ ≥ 0.

Review 14 (Test Feb-05), 8.8 (Notes Feb-01)

Problem: Motivate the concept of a Wiener process at hand of random

walks. Explain the term ”increments independent of the past”.

——

Let X1, X2, . . . , Xn be independent and in addition P (Xi = 1) = P (Xi = −1) = 1
2
.

Then Sn = X1 +X2 + . . .+Xn whenever n = 1, 2, . . . is a symmetric random walk. As

X1, X2, . . . , Xn are independetn, the increments Sn − Sm = Xm+1 + . . . + Xn are also

independent. Moreover, we have

E(Xi) = 0 ⇒ E(Sn − Sm) = 0 and

V (Xi) = 1 ⇒ V (Sn − Sm) = n−m

Thus, the Wiener process can be interpreted as a continuous time version of a sym-

metric random walk.

The past process (Xt)t≥0 at time t is the σ-field of events FX
t σ(Xs : s ≤ t) generated

by variables Xs of the process prior to t, i.e. s ≤ t. The intuitive idea behind the

concept of past is the following: FX
t consists of all the events which are observable if
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one observes the process up to time t. It represents the information about the process

available at time t.

Let s1 ≤ s2 ≤ . . . ≤ sn ≤ s ≤ t Then the random variables Ws1 , Ws2 −

Ws1 , . . . ,Wsn − Wsn−1 , Wt − Ws are independent. It follows that even the random

variables Ws1 , Ws2 , . . . Wsn are independent of Wt − Ws. Since this is valid for any

choice ot fime points si ≤ s the independence assertion carries over to the whole past

FX
t .

Review 15 (Test Feb-05), 8.13 (Notes Feb-01)

Problem: In what sense behave the paths of a Wiener process very irreg-

ularly ?

——

There are two kinds of irregularity:

(a) Right continuity:

lim
xn→x+

f(xn) = f(x) but lim
xn→x−

f(xn) 6= f(x)

(b) Left continuity:

lim
xn→x−

f(xn) = f(x) but lim
xn→x+

f(xn) 6= f(x)

Moreover, the paths of the Wiener process are continuus but almost nowhere differen-

tiable.
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