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Exercise 2.1

Exercise 2.1 is concerned with MATLAB programming in groups of two.

Exercise 2.2

σ-Algebra F :

• collection of subsets of S with the following properties:

– φ ∈ F , Ω ∈ F ,

– if A ∈ F , then Ac ∈ F (closed under complementation)

– if A1, A2, . . . ∈ F , then
⋃∞

i=1 Ai ∈ F (closed under countable unions)

• same as a field, with the difference that a field may not be closed under countably

infinite unions

(Probability) Measure:

• A measure is a σ-additive content which is defined on a σ-algebra.

• content: set function µ defined on a field F such that

– µ(A) ∈ [0,∞) whenever A ∈ F

– µ(φ) = 0
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– µ(A1 ∪ A2) = µ(A1) + µ(A2) whenever A1, A2 ∈ F and A1 ∩ A2 = φ

• σ-additivity: µ(
⋃∞

i=1 Ai) =
∑∞

i µ(Ai) whenever all Ai ∈ F and pairwise disjoint

• A measure P is called a probability measure if P (Ω) = 1.

Probability Space:

• if P |F is a probability measure then (Ω,F , P ) is called a probability space

• Ω

Measurable Function:

A function f : (Ω,A, µ) 7→ (Y,B) is called (A,B)-measurable if f−1(B) ∈ A ∀ B ∈

B.

If f : (Ω,A, µ) 7→ (Y,B) is (A,B)-measurable, then we may define:

µf (B) := µ(f ∈ B) = µ(f−1(B))

with B ∈ B. This is the image of µ under f or the distribution of f under µ. Random

Variable:

• function from a probability space (Ω,F , P ) to R.

Exercise 2.3

(i) β is the solution to (1), so X ′Xβ = X ′y. And we know that γ = Nβ,

W ′Wγ = W ′WNβ = M ′X ′Xβ = M ′X ′y = W ′y

which means γ is the solution to (2).

(ii) Analogously γ is the solution to (2), so W ′Wγ = W ′y.

And β = Mγ, X ′Xβ = N ′W ′XMγ = N ′W ′Wγ = N ′W ′y = X ′y, which means β is

the solution to (1).
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(iii) Directly from (i) and (ii), if β is the solution to (1) and γ is the solution to (2),

then β = Mγ.

Thus Xβ = XMγ = Wγ.

Exercise 2.4

Exercise 2.4 is the same as exercise 1.8 in Econometrics problem set 1

Exercise 2.5

Show that the matrix (where we use the notation introduced in class)

IT −
11’

T

is a projector, where IT ∈ RT×T is the T-dimensional identity matrix. What is the

space that this operator projects on? Consequently, is the matrix 11’
T

also a projector,

and if so, what is it projecting on?

For any y ∈ RT we get

[
IT −

11’

T

]
y =



1− 1
T

− 1
T

. . . . . . − 1
T

− 1
T

1− 1
T

. . .
...

...
. . . . . .

...
...

. . . − 1
T

− 1
T

. . . − 1
T

1− 1
T


y =


y1 − ȳ

...

...

yT − ȳ



where ȳ =
∑T

t=1 yt.
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(i) We show that IT − 11’
T

is idempotent:

(
11’

T

)(
11’

T

)
=


1
T

. . . 1
T

...
. . .

...

1
T

. . . 1
T




1
T

. . . 1
T

...
. . .

...

1
T

. . . 1
T

 =


T
T 2 . . . T

T 2

...
. . .

...

T
T 2 . . . T

T 2

 =


1
T

. . . 1
T

...
. . .

...

1
T

. . . 1
T

 =
11’

T

Therefore(
IT −

11’

T

)(
IT −

11’

T

)
= IT −2

11’

T
+

(
11’

T

)(
11’

T

)
= IT −2

11’

T
+

11’

T
= IT −

11’

T

(ii) We show that IT − 11’
T

is symmetric:

〈
a,

(
IT −

11’

T

)
b

〉
=

T∑
t=1

at

(
bt − b̄

)
=

T∑
t=1

at

(
bt −

1

T

T∑
s=1

bs

)
=

T∑
t=1

atbt−
T∑

t=1

(
at

1

T

T∑
s=1

bs

)
=

=
T∑

t=1

atbt−

(
T∑

s=1

bs

)(
1

T

T∑
t=1

at

)
=

T∑
t=1

atbt−ā
T∑

s=1

bs =
T∑

s=1

bs (as − ā) =

〈(
IT −

11’

T

)
a, b

〉

(iii) We show that IT − 11’
T

projects onto the orthocomplement of 1 = (1, 1, ....1)′:

(a)

(
IT −

11’

T

)
y = 0 ⇔


y1 − ȳ

...

yT − ȳ

 =


0
...

0

⇔ y1 = y2 = · · · = yT = ȳ ⇔ y = ȳ


1
...

1


Thus, only vectors that are multiples of (1, 1, ...1)′ are orthogonal to the projection

space of IT − 11’
T

.

(b) For any y ∈ RT we have

〈(
IT −

11’

T

)
y,1

〉
=


y1 − ȳ

...

yT − ȳ


′

1
...

1

 =
T∑

t=1

yt − T ȳ =
T∑

t=1

yt −
T

T

T∑
t=1

yt = 0
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Thus the projection of any y ∈ RT by IT − 11’
T

is orthogonal to 1 = (1, 1, ....1)′.

(iv) We show that for any projector P projecting on the space spanned by the

colums of some matrix A, I − P is a projector projecting onto the orthocomplement

of the column space of A:

(a)

(I − P ) (I − P ) = I − PI − IP + PP = I − P

since P is idempotent. So I − P is idempotent.

(b)

〈a, (I − P ) b〉 = 〈a, b〉 − 〈a, Pb〉 = 〈a, b〉 − 〈Pa, b〉 = 〈(I − P ) a, b〉

since P is symmetric. So I − P is symmetric.

(c)For any two vectors y, z ∈ RT we obtain

〈Py, (I − P ) y〉 = 〈Py, z − Pz〉 = 〈Py, z〉−〈Py, Pz〉 = y′P ′z−y′P ′Pz = y′P ′y−y′P ′y = 0

since P is idempotent and symmetric. Thus, P and I −P project onto orthogonal

spaces.

For our specific application, taking all this together we obtain that 11’
T

is a projector

onto the space spanned by 1 = (1, 1, ...1)′.

Exercise 2.6

Consider the estimator under linear restrictions as discussed in class.

(i) Show that the estimator fulfills the restrictions

We hat the following set of restrictions: Rm×kβk×1 = rm×1, rk(R) = m and β̂ the

ordinary least squares estimator in the standard regression model.
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The restricted least squares estimator derived in class is given by:

β∗ = β̂ − (X ′X)−1R′[R(X ′X)−1R′]−1(Rβ̂ − r)

Just for convenience and later purposes define Q := (X ′X)−1R′[R(X ′X)−1R′]−1.

We see that if β̂ already fulfills the restrictions, the last term will be zero and we

end up with our β̂ estimator. Rewriting the equation yields

β∗ = [Ik − (X ′X)−1R′[R(X ′X)−1R′]−1R]β̂ + [(X ′X)−1R′[R(X ′X)−1R′]−1]r

β∗ = β̂ − (X ′X)−1R′[R(X ′X)−1R′]−1Rβ̂ + [(X ′X)−1R′[R(X ′X)−1R′]−1]r

So if we premultiply this equation from the left with R we get:

Rβ∗ = Rβ̂ −R(X ′X)−1R′[R(X ′X)−1R′]−1Rβ̂ + R[(X ′X)−1R′[R(X ′X)−1R′]−1]r

Hence it remains to show that the part on the right hand side equals r. Consider them

by parts, if we start with the last one, we see that

R(X ′X)−1R′[Rm×k(X
′X)−1

k×kR
′
k×m︸ ︷︷ ︸

m×m with full rank m

]−1]r = r

In order to fulfill the equation, the first and the second terms must cancel each other,

hence we desire R(X ′X)−1R′[R(X ′X)−1R′]−1Rβ̂ to equal Rβ̂.

R(X ′X)−1R′[R(X ′X)−1R′]−1︸ ︷︷ ︸
Im

Rβ̂ = Rβ̂

Finally we get

Rβ∗ = Rβ̂ −Rβ̂ + r = r.

(ii) Compute the variance covariance matrix Σβ∗β∗ . First compute the expectation

of β∗.

E(β∗) = E(β̂)− E(QRβ̂) + E(Qr)

= β −QRβ + Qr

= β −Q(Rβ − r)

= β + (X ′X)−1R′[R(X ′X)−1R′]−1(r −Rβ)︸ ︷︷ ︸
bias if true β does not fulfill the restrictions
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We will later need the expression(β∗ − Eβ∗). By plugging in, what we just calculated

above we get

(β∗ − Eβ∗) = β̂ −QRβ̂ + Qr − (β −QRβ + Qr)

= β̂ − β −QRβ̂ + QRβ

= β̂ − β −QR(β̂ − β)

Now we can proceed and calculate the variance-covariance matrix Σβ∗β∗ .

Σβ∗β∗ = E[(β∗ − Eβ∗)(β∗ − Eβ∗)′]

= E[(β̂ −QR(β̂ − β))(β̂ −QR(β̂ − β))′]

= (Ik −QR)E[(β̂ − β)(β̂ − β)′](Ik −QR)′

= (Ik −QR)σ2(X ′X)−1(β̂ − β)′](Ik −QR)′︸ ︷︷ ︸
A

= σ2[(X ′X)−1 − 2(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1

+ (X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1R′

[R(X ′X)−1R′]−1R(X ′X)−1

= σ2[(X ′X)−1 − (X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1

Martin Wagners Comment: Go directly to equation line ”A” by recognizing that

the VCV of β̂ is σ2(X ′X)−1 and the restricted estimator is a transformation of β̂ (i.e.

β∗ = (Ik −QR)β̂ + Qr).

(iii) Show that the variance covarinace matrix of the restricetd estimator is smaller

or equal than the variance covariance matrix of the unrestricted OLS estimator, when

the restrictions are correct. How do you interpret this? Intuitively it is clear that

the vcv matrix of the restricted estimator is smaller or equal to that of the ols esti-

mator because we minimize over a smaller set of β’s (namely the ones that fulfill the

restriction). Also from the derived result in (ii) it can be seen that

Σβ∗β∗ = σ2(X ′X)−1︸ ︷︷ ︸
V ar(β̂)

−σ2(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1.
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It remains to show that σ2(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1 is a non neg. def.

matrix. Multiply the expression by α ∈ Rk and its transpose

α(X ′X)−1R′︸ ︷︷ ︸
γ′

[R(X ′X)−1R′]−1 R(X ′X)−1α︸ ︷︷ ︸
γ

?︷︸︸︷
≥ 0 ∀ α ∈ Rk

It suffices to show that γ′[R(X ′X)−1R′]−1γ ≥ 0 But we know that X is pos. def., hence

also the inverse (X ′X)−1 is pos.def., consequently R(X ′X)−1R′ is pos. def, its inverse

and finally it holds that

γ′[R(X ′X)−1R′]−1γ ≥ 0.

So we have shown that Σβ∗β∗ ≤ Σβ̂β̂. This is always true, even if the restriction is

wrong and thus β∗ is biased.

Exercise 2.7

Show the following lemma. Under assumptions (A1), (B1) and (B2) it holds that:

(i) E(syy) = β′Sxxβ + T−1
T

σ2

(ii) E(sbyby) = β′Sxxβ + k−1
T

σ2
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(i) Show that E(syy) = β′Sxxβ + T−1
T

σ2 where Sxx = 1
T
X ′ (I − 1

T
11′
)
X

E(syy) = 1
T

E ((y − ȳ1)′(y − ȳ1)) = 1
T

E
(
(y − 1

T
1y1)′(y − 1

T
1y1)

)
=

= 1
T

[
E(y′y)− E(y′11′y 1

T
)− E(y′11′y 1

T
) + E(1′y 1′1︸︷︷︸

T

y′1 1
T 2

)

]
= 1

T

[
E(y′y)− 1

T
E(y′11′y)

]
= 1

T
E(y′(I − 1

T
11′)y) =

= 1
T

E
(
(β′X ′ + u′)(I − 1

T
11′)(Xβ + u)

)
=

= 1
T

E

β′X ′(I − 1
T
11′)Xβ︸ ︷︷ ︸

β′Sxxβ

+2β′X ′(I − 1
T
11′)u + u′(I − 1

T
11′)u

 =

= β′Sxxβ + 1
T

E
(
u′(I − 1

T
11′)u

)
= β′Sxxβ + 1

T
E(u′u)︸ ︷︷ ︸

σ2

− 1
T 2

E( u′11′u︸ ︷︷ ︸
=1′uu′1=1′σ2I1

) =

= β′Sxxβ + σ2 − 1
T 2

σ2 1′I1︸︷︷︸
T

=

= β′Sxxβ +
T − 1

T
σ2

(ii) Show that E(sbyby) = β′Sxxβ + k−1
T

σ2 where Sxx = 1
T
X ′ (I − 1

T
11′
)
X

If β includes a constant, i.e.X includes the one-vector 1, we know from the fact

û′X = y′X − ŷ′X = y′X − y′XX+X = 0 that the sum of residuals û′1 = 0 and thuŝ̄u = 0. This implies 1′y = 1′y − 1′û = 1′ŷ ⇒ ȳ = ̂̄y. (Moreover note the following:

ŷ = y − û, hence û = (I −XX+)u, and thus E(û) = 0.)

E(sbyby) = 1
T

E((ŷ − ȳ1)′(ŷ − m̄xy1)) = E (((y − ȳ1)− û)′((y − ȳ1)− û)) =

= 1
T

E((y − ȳ1)′(y − ȳ1))− 1
T
2E(û′(y − ȳ1))︸ ︷︷ ︸

= 2
T

E(bu′(by+bu−ȳ1))= 2
T

E(bu′bu) since bu′by=0

+ 1
T

E(û′û)

= E(syy)− 1
T

E(û′û)
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And now, what is E (û′û)? (Note that û = (I −XX+)u.)

E (û′û) = E
(
u′(I −XX+)(I −XX+)u

)
= E

(
u′(I −XX+)u

)
= E

(
tr(u′(I −XX+)u)

)
= tr(σ2IT (IT −XX+)) = σ2(tr(IT )− tr(XX+))

By the properties of XX+ as a projector, we know that its trace equals the sum of

its eigenvalues. Furthermore its eigenvalues can only be either 1 or 0, where there are

as many ones within the eigenvalues as the rank of XX+. This implies tr(XX+) =

rank(XX+). Let’s define the rank of XX+ to be k. Hence (tr(I)− tr(XX+)) = T −k.

Therefore:

E (û′û) = σ2(T − k)

Now plugging in this expression into the one for E(sbyby) leads to:

E(sbyby) = E(syy)− 1
T

E(û′û) = β′Sxxβ +
T − 1

T
σ2 − T − k

T
σ2 =

= β′Sxxβ +
k − 1

T
σ2

Exercise 2.8

(i+ii) Corrected version:

Regressing the matrix X on regressors corresponding to the fixed effects αi, where

this large regressor-matrix takes the following form:

Xα =


1

1
. . .

1

 = IN ⊗ 1
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We hence receive the estimator for this regression by

β̂X = (X ′
αXα)−1X ′

αX

= ((IN ⊗ 1)′(IN ⊗ 1))
−1

(IN ⊗ 1)′X

= ((IN ⊗ 1′)(IN ⊗ 1))−1(IN ⊗ 1′)X

= (IN ⊗ 1′1)−1(IN ⊗ 1′)X

= (IN ⊗ T )−1(IN ⊗ 1′)X

= (IN ⊗
1

T
)(IN ⊗ 1′)X

= (IN ⊗
1

T
1′)X

By the same computations, we receive the estimator for the regression of Y on Xα

as

β̂Y = (IN ⊗
1

T
1′)Y

For the residuals related to these two regressions, we receive

X̃ = X − X̂

= X −Xαβ̂X

= X − (IN ⊗ 1)(IN ⊗
1

T
1′)X

= X − (IN ⊗
1

T
11′)X

= (INT − IN ⊗
1

T
11′)X

= (IN ⊗ IT − IN ⊗
1

T
11′)X

= (IN ⊗ (IT −
1

T
11′))X
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X̃ =



IT −


1
T

. . . 1
T

...

1
T

. . . 1
T


 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0

IT −


1
T

. . . 1
T

...

1
T

. . . 1
T








X1

...

...

...

XN



=



X1 − X̄1

...

XN − X̄N


And by the same computations:

Ỹ =



Y1 − Ȳ1

...

YN − ȲN



So, we see that the residuals are just the demeaned observations, with demeaning

12



occurring for each i separately.

The next step is to make use of the Frisch-Waugh-Theorem and use these residuals

to compute β̂ :

β̂ = (X̃ ′X̃)−1X̃ ′ỹ

(iii) The projectors corresponding to the fixed effects αi are the projectors onto

the ortho-complement of span(1)

M1 = (IT − P1)

= IT − 1T 1+
T

= IT − 1T (1′T 1T )−11′T

= IT −
1

T
1T 1′T

= IT −


1
T

. . . 1
T

...

1
T

. . . 1
T


So, again, from this notation, one can immediately see, that the regression on αi

performs a de-meaning of the projected matrix of suitable size, T ×M (M arbitrary).

Now, one could either proceed and apply this regressor on all yi and Xi and afterwards

stack together the N residual matrices to compute a pooled estimate of β, or create

a stacked-projecotr of suitable size and apply it on the stacked y = (y1 . . . yN)′ and

X = (X1 . . . XN)′ matrices. Both methods are of course equivalent. Choosing the

second option, the suitable projecotr is obtained by (1N ⊗M1) ∈ RT×NT .

(1N ⊗M1)y = ỹ = (ỹ1, . . . , ỹ1)
′ ∈ RNT×1 (1)

(1N ⊗M1)X = X̃ = (X̃1, . . . , X̃1)
′ ∈ RNT×k (2)
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From these computations, we can see, that the procedures in sub-points (i) and (iii)

yield exactly the same results.

Again applying the Frisch-Waugh-Theorem we receive exactly the same estimators

as before:

β̂ = (X̃ ′X̃)−1X̃ ′ỹ

(iv) Let’s consider a regression with constant for arbitrary dimension T × k.

Xi =


1 x11 . . . x1(k−1)

...
...

...

1 xT1 . . . xt(k−1)



X ′
iXi =



T
∑T

t=1 x1t . . . . . .
∑T

t=1 x(k−1)t∑T
t=1 x1t

∑T
t=1 x2

1t

∑T
t=1 x1tx2t . . .

∑T
t=1 x1tx(k−1)t

...
∑T

t=1 x2tx1t
. . .

...
...

...
. . .

...∑T
t=1 x(k−1)t

∑T
t=1 x(k−1)tx1t . . .

∑T
t=1 x2

(k−1)t


Now consider the normal equations X ′

iXiβ = X ′
iyi. This yields the first row

Tα +
T∑

t=1

x1tβ1 . . . +
T∑

t=1

x(k−1)tβk−1 =
T∑

t=1

yt / : T

α̂ + ¯̂x1β1 + . . . + ¯̂xk−1βk−1 = ¯̂y

α̂ = ¯̂y −
k−1∑
i=1

¯̂xiβi

α̂ = ¯̂y − ¯̂xβ̂

as for any inhomogeneous regression ¯̂y = ȳ and ¯̂x = x̄, as shown in class. Hence, the

regression line passes through the empirical means of the dependent and explanatory
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variables. In our case, we can thus take the values already derived for the x̄i and ȳi

and calculate:

α̂i = ȳi − x̄iβ̂ = P1yi − P1xiβ̂ = P1(yi − xiβ̂)

⇒ α̂i = (yi − xiβ̂)

(v) As we estimated k parameters and computed N means, the correct degree of

freedom for the estimation of σ2 is NT − k −N. So σ̂2 = ũ′ũ
NT−k−N

.

(v) As we estimated k parameters and computed N means, the correct degree of

freedom for the estimation of σ2 is NT − k −N. So σ̂2 = ũ′ũ
NT−k−N

.

(iv) Let’s consider a regression with constant for arbitrary dimension T × k.

Xi =


1 x11 . . . x1(k−1)

...
...

...

1 xT1 . . . xt(k−1)



X ′
iXi =



T
∑T

t=1 x1t . . . . . .
∑T

t=1 x(k−1)t∑T
t=1 x1t

∑T
t=1 x2

1t

∑T
t=1 x1tx2t . . .

∑T
t=1 x1tx(k−1)t

...
∑T

t=1 x2tx1t
. . .

...
...

...
. . .

...∑T
t=1 x(k−1)t

∑T
t=1 x(k−1)tx1t . . .

∑T
t=1 x2

(k−1)t


Now consider the normal equations X ′

iXiβ = X ′
iyi. This yields the first row

Tα +
T∑

t=1

x1tβ1 . . . +
T∑

t=1

x(k−1)tβk−1 =
T∑

t=1

yt / : T
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α̂ + ¯̂x1β1 + . . . + ¯̂xk−1βk−1 = ¯̂y

α̂ = ¯̂y −
k−1∑
i=1

¯̂xiβi

α̂ = ¯̂y − ¯̂xβ̂

as for any inhomogeneous regression ¯̂y = ȳ and ¯̂x = x̄, as shown in class. Hence, the

regression line passes through the empirical means of the dependent and explanatory

variables. In our case, we can thus take the values already derived for the x̄i and ȳi

and calculate:

α̂i = ȳi − x̄iβ̂ = P1yi − P1xiβ̂ = P1(yi − xiβ̂)

⇒ α̂i = (yi − xiβ̂)
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